We show that a small conducting object, such as a nanosphere or a nanoring, embedded into or placed in the vicinity of the two-dimensional electron liquid (2DEL) and subjected to a circularly polarized electromagnetic radiation induces ``twisted plasmonic oscillations in the adjacent 2DEL. The oscillations are rectified due to the hydrodynamic nonlinearities leading to the helicity sensitive circular dc current and to a magnetic moment. This hydrodynamic inverse Faraday effect (HIFE) can be observed at room temperature in different materials. The HIFE is dramatically enhanced in a periodic array of the nanospheres forming a resonant plasmonic coupler. Such a coupler exposed to a circularly polarized wave converts the entire 2DEL into a vortex state. Hence, the twisted plasmonic modes support resonant plasmonic-enhanced gate-tunable optical magnetization. Due to the interference of the plasmonic and Drude contributions, the resonances have an asymmetric Fano-like shape. These resonances present a signature of the 2DEL properties not affected by contacts and interconnects and, therefore, providing the most accurate information about the 2DEL properties. In particular, the widths of the resonances encode direct information about the momentum relaxation time and viscosity of the 2DEL.