Do you want to publish a course? Click here

Dynamics of a Fleming-Viot type particle system on the cycle graph

106   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English
 Authors Josue Corujo




Ask ChatGPT about the research

We study the Fleming-Viot particle process formed by N interacting continuous-time asymmetric random walks on the cycle graph, with uniform killing. We show that this model has a remarkable exact solvability, despite the fact that it is non-reversible with non-explicit invariant distribution. Our main results include quantitative propagation of chaos and exponential ergodicity with explicit constants, as well as formulas for covariances at equilibrium in terms of the Chebyshev polynomials. We also obtain a bound uniform in time for the convergence of the proportion of particles in each state when the number of particles goes to infinity.



rate research

Read More

In previous work, we constructed Fleming--Viot-type measure-valued diffusions (and diffusions on a space of interval partitions of the unit interval $[0,1]$) that are stationary with the Poisson--Dirichlet laws with parameters $alphain(0,1)$ and $thetageq 0$. In this paper, we complete the proof that these processes resolve a conjecture by Feng and Sun (2010) by showing that the processes of ranked atom sizes (or of ranked interval lengths) of these diffusions are members of a two-parameter family of diffusions introduced by Petrov (2009), extending a model by Ethier and Kurtz (1981) in the case $alpha=0$. The latter diffusions are continuum limits of up-down Chinese restaurant processes.
Reversibility of the Fleming-Viot process with mutation, selection, and recombination is well understood. In this paper, we study the reversibility of a system of Fleming-Viot processes that live on a countable number of colonies interacting with each other through migrations between the colonies. It is shown that reversibility fails when both migration and mutation are non-trivial.
We consider predictive inference using a class of temporally dependent Dirichlet processes driven by Fleming--Viot diffusions, which have a natural bearing in Bayesian nonparametrics and lend the resulting family of random probability measures to analytical posterior analysis. Formulating the implied statistical model as a hidden Markov model, we fully describe the predictive distribution induced by these Fleming--Viot-driven dependent Dirichlet processes, for a sequence of observations collected at a certain time given another set of draws collected at several previous times. This is identified as a mixture of Polya urns, whereby the observations can be values from the baseline distribution or copies of previous draws collected at the same time as in the usual P`olya urn, or can be sampled from a random subset of the data collected at previous times. We characterise the time-dependent weights of the mixture which select such subsets and discuss the asymptotic regimes. We describe the induced partition by means of a Chinese restaurant process metaphor with a conveyor belt, whereby new customers who do not sit at an occupied table open a new table by picking a dish either from the baseline distribution or from a time-varying offer available on the conveyor belt. We lay out explicit algorithms for exact and approximate posterior sampling of both observations and partitions, and illustrate our results on predictive problems with synthetic and real data.
We revisit the spatial ${lambda}$-Fleming-Viot process introduced in [1]. Particularly, we are interested in the time $T_0$ to the most recent common ancestor for two lineages. We distinguish between the case where the process acts on the entire two-dimensional plane, and on a finite rectangle. Utilizing a differential equation linking $T_0$ with the physical distance between the lineages, we arrive at simple and reasonably accurate approximation schemes for both cases. Furthermore, our analysis enables us to address the question of whether the genealogical process of the model comes down from infinity, which has been partly answered before in [2].
We present classes of models in which particles are dropped on an arbitrary fixed finite connected graph, obeying adhesion rules with screening. We prove that there is an invariant distribution for the resulting height profile, and Gaussian concentration for functions depending on the paths of the profiles. As a corollary we obtain a law of large numbers for the maximum height. This describes the asymptotic speed with which the maximal height increases. The results incorporate the case of independent particle droppings but extend to droppings according to a driving Markov chain, and to droppings with possible deposition below the top layer up to a fixed finite depth, obeying a non-nullness condition for the screening rule. The proof is based on an analysis of the Markov chain on height-profiles using coupling methods. We construct a finite communicating set of configurations of profiles to which the chain keeps returning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا