Do you want to publish a course? Click here

Nonlocal multicontinua with Representative Volume Elements. Bridging separable and non-separable scales

100   0   0.0 ( 0 )
 Added by Wing Tat Leung
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently, several approaches for multiscale simulations for problems with high contrast and no scale separation are introduced. Among them is the nonlocal multicontinua (NLMC) method, which introduces multiple macroscopic variables in each computational grid. These approaches explore the entire coarse block resolution and one can obtain optimal convergence results independent of contrast and scales. However, these approaches are not amenable to many multiscale simulations, where the subgrid effects are much smaller than the coarse-mesh resolution. For example, the molecular dynamics of shale gas occurs in much smaller length scales compared to the coarse-mesh size, which is of orders of meters. In this case, one can not explore the entire coarse-grid resolution in evaluating effective properties. In this paper, we merge the concepts of nonlocal multicontinua methods and Representative Volume Element (RVE) concepts to explore problems with extreme scale separation. The first step of this approach is to use sub-grid scale (sub to RVE) to write a large-scale macroscopic system. We call it intermediate scale macroscale system. In the next step, we couple this intermediate macroscale system to the simulation grid model, which are used in simulations. This is done using RVE concepts, where we relate intermediate macroscale variables to the macroscale variables defined on our simulation coarse grid. Our intermediate coarse model allows formulating macroscale variables correctly and coupling them to the simulation grid. We present the general concept of our approach and present details of single-phase flow. Some numerical results are presented. For nonlinear examples, we use machine learning techniques to compute macroscale parameters.



rate research

Read More

In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation.
Two-photon states entangled in continuous variables such as wavevector or frequency represent a powerful resource for quantum information protocols in higher-dimensional Hilbert spaces. At the same time, there is a problem of addressing separately the corresponding Schmidt modes. We propose a method of engineering two-photon spectral amplitude in such a way that it contains several non-overlapping Schmidt modes, each of which can be filtered losslessly. The method is based on spontaneous parametric down-conversion (SPDC) pumped by radiation with a comb-like spectrum. There are many ways of producing such a spectrum; here we consider the simplest one, namely passing the pump beam through a Fabry-Perot interferometer. For the two-photon spectral amplitude (TPSA) to consist of non-overlapping Schmidt modes, the crystal dispersion dependence, the length of the crystal, the Fabry-Perot free spectral range and its finesse should satisfy certain conditions. We experimentally demonstrate the control of TPSA through these parameters. We also discuss a possibility to realize a similar situation using cavity-based SPDC.
This paper studies non-separable models with a continuous treatment when the dimension of the control variables is high and potentially larger than the effective sample size. We propose a three-step estimation procedure to estimate the average, quantile, and marginal treatment effects. In the first stage we estimate the conditional mean, distribution, and density objects by penalized local least squares, penalized local maximum likelihood estimation, and numerical differentiation, respectively, where control variables are selected via a localized method of L1-penalization at each value of the continuous treatment. In the second stage we estimate the average and marginal distribution of the potential outcome via the plug-in principle. In the third stage, we estimate the quantile and marginal treatment effects by inverting the estimated distribution function and using the local linear regression, respectively. We study the asymptotic properties of these estimators and propose a weighted-bootstrap method for inference. Using simulated and real datasets, we demonstrate that the proposed estimators perform well in finite samples.
382 - L. Hlophe , Jin Lei , Ch. Elster 2017
{bf Background:} Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. {bf Purpose:} Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their solution based on separable interactions agrees exactly with solutions based on non-separable forces. {bf Results:} The ground state of $^6$Li is calculated via momentum space Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-$^4$He force. For the latter the Pauli-forbidden $S$-wave bound state is projected out. This result is compared to a calculation in which the interactions in the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler framework. {bf Conclusions:} We find that calculations based on the separable representation of the interactions and the original interactions give results that agree to four significant figures for the binding energy, provided an off-shell extension of the EST representation is employed in both subsystems. The momentum distributions computed in both approaches also fully agree with each other.
79 - Elise Grosjean 2021
The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are often used to reduce computational costs of a classical high fidelity code based on Finite Element Method (FEM), Finite Volume (FVM) or Spectral methods. The efficient implementation of most of these RBM requires to modify this high fidelity code, which cannot be done, for example in an industrial context if the high fidelity code is only accessible as a black-box solver. The Non Intrusive Reduced Basis method (NIRB) has been introduced in the context of finite elements as a good alternative to reduce the implementation costs of these parameter-dependent problems. The method is efficient in other contexts than the FEM one, like with finite volume schemes, which are more often used in an industrial environment. In this case, some adaptations need to be done as the degrees of freedom in FV methods have different meenings. At this time, error estimates have only been studied with FEM solvers. In this paper, we present a generalisation of the NIRB method to Finite Volume schemes and we show that estimates established for FEM solvers also hold in the FVM setting. We first prove our results for the hybrid-Mimetic Finite Difference method (hMFD), which is part the Hybrid Mixed Mimetic methods (HMM) family. Then, we explain how these results apply more generally to other FV schemes. Some of them are specified, such as the Two Point Flux Approximation (TPFA).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا