We study the spin-boson model (SBM) with two spins in staggered biases by a numerically exact method based on variational matrix product states. Several observables such as the magnetization, the entanglement entropy between the two spins and the bosonic environment, the ground-state energy, as well as the correlation function for two spins are calculated exactly. The characteristics of these observables suggest that the staggered biases can drive the 2nd-order quantum phase transition (QPT) to the 1st-order QPT in the sub-Ohmic SBM, while the Kosterlitz-Thouless QPT in the Ohmic SBM goes directly to the 1st-order one. A quantum tricritical point, where the continuous QPT meets the 1st-order one, can then be detected. It is found that the staggered biases would not change the universality of { the phase transition in this model} below the quantum tricritical point.