Do you want to publish a course? Click here

Coexistence of the Kondo effect and spin glass physics in Fe-doped NbS$_2$

59   0   0.0 ( 0 )
 Added by Hiroyoshi Nobukane
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the coexistence of the Kondo effect and spin glass behavior in Fe-doped NbS$_2$ single crystals. The Fe$_x$NbS$_2$ shows the resistance minimum and negative magnetoresistance due to the Kondo effect, and exhibits no superconducting behavior at low temperatures. The resistance curve follows a numerical renormalization-group theory using the Kondo temperature $T_K =12.3$~K for $x=0.01$ as evidence of Kondo effect. Scanning tunneling microscope/spectroscopy (STM/STS) revealed the presence of Fe atoms near sulfur atoms and asymmetric spectra. The magnetic susceptibility exhibits a feature of spin glass. The static critical exponents determined by the universal scaling of the nonlinear part of the susceptibility suggest a three-dimensional Heisenberg spin glass. The doped-Fe atoms in the intra- and inter-layers revealed by the X-ray result can realize the coexistence of the Kondo effect and spin glass.



rate research

Read More

Coexistence between ferromagnetic order and Kondo behavior has been observed in some uranium compounds. The underscreened Kondo lattice model can provide a possible description of this coexistence. Here we present a model of a lattice of S=1 spins coupled to the conduction electrons through an intra-site exchange interaction $J_{K}$ and an inter-site ferromagnetic exchange $f-f$ interaction $J_{H}$. Finite temperature results show that the Kondo temperature is larger than the Curie ordering temperature, $T_{C}$, providing a possible scenario for the coexistence of Kondo effect and magnetic order. Also, the Kondo behavior disappears abruptly for low values of $J_{K}$ and smoothly when changing the band occupation. These results are in qualitative agreement with the experimental situation for the above mentioned uranium compounds.
The disordered antiferromagnet pfn (pfns) is investigated in a wide temperature range by combining Mossbauer spectroscopy and neutron diffraction experiments. It is demonstrated that the magnetic ground state is a {it microscopic} coexistence of antiferromagnetic and a spin-glass orders. This speromagnet-like phase features frozen-in short-range fluctuations of the Fe$^{3+}$ magnetic moments that are transverse to the long-range ordered antiferromagnetic spin component.
Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such Ising-nematic systems is a simple scalar. Here, using a novel spatially-resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe$_{1/3}$NbS$_2$. The crucial difference is that the nematic order on the triangular lattice is a Z$_3$, or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously re-oriented by external perturbations. This discovery provides insight into realizing devices that exploit analogies with nematic liquid crystals.
We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo$_2$As$_2$, derived from SrFe$_{2-x}$Co$_x$As$_2$ iron pnictide superconductors. Our data reveals the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors $textbf{Q}_{rm AF}$=(1,0) and $textbf{Q}_{rm FM}$=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo$_2$As$_2$ are closely associated with a flat band of the $e_g$ orbitals near the Fermi level, different from the $t_{2g}$ orbitals in superconducting SrFe$_{2-x}$Co$_x$As$_2$. Therefore, Co-substitution in SrFe$_{2-x}$Co$_x$As$_2$ induces a $t_{2g}$ to $e_g$ orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.
We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity $rho_{xx}(T,H)$, Hall resistivity $rho_{xy}(T,H)$, and magnetic susceptibility as a function of temperature and various magnetic fields for VAs$_2$ with a monoclinic crystal structure. The band structure calculations show that VAs$_2$ is a nodal-line semimetal when spin-orbit coupling is ignored. The emergence of a minimum at around 11 K in $rho_{xx}(T)$ measured at $H$ = 0 demonstrates that an additional magnetic impurity (V$^{4+}$, $S$ = 1/2) occurs in VAs$_2$ single crystals, evidenced by both the fitting of $rho_{xx}(T)$ data and the susceptibility measurements. It was found that a large positive magnetoresistance (MR) reaching 649% at 10 K and 9 T, its nearly quadratic field dependence, and a field-induced up-turn behavior of $rho_{xx}(T)$ emerge also in VAs$_2$, although MR is not so large due to the existence of additional scattering compared with other topological nontrival/trival semimetals. The observed properties are attributed to a perfect charge-carrier compensation, which is evidenced by both calculations relying on the Fermi surface and the Hall resistivity measurements. These results indicate that the compounds containing V ($3d^3 4s^2$) element as a platform for studying the influence of magnetic impurities to the topological properties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا