Certain type of documents such as tweets are collected by specifying a set of keywords. As topics of interest change with time it is beneficial to adjust keywords dynamically. The challenge is that these need to be specified ahead of knowing the forthcoming documents and the underlying topics. The future topics should mimic past topics of interest yet there should be some novelty in them. We develop a keyword-based topic model that dynamically selects a subset of keywords to be used to collect future documents. The generative process first selects keywords and then the underlying documents based on the specified keywords. The model is trained by using a variational lower bound and stochastic gradient optimization. The inference consists of finding a subset of keywords where given a subset the model predicts the underlying topic-word matrix for the unknown forthcoming documents. We compare the keyword topic model against a benchmark model using viral predictions of tweets combined with a topic model. The keyword-based topic model outperforms this sophisticated baseline model by 67%.
Despite many years of research into latent Dirichlet allocation (LDA), applying LDA to collections of non-categorical items is still challenging. Yet many problems with much richer data share a similar structure and could benefit from the vast literature on LDA. We propose logistic LDA, a novel discriminative variant of latent Dirichlet allocation which is easy to apply to arbitrary inputs. In particular, our model can easily be applied to groups of images, arbitrary text embeddings, and integrates well with deep neural networks. Although it is a discriminative model, we show that logistic LDA can learn from unlabeled data in an unsupervised manner by exploiting the group structure present in the data. In contrast to other recent topic models designed to handle arbitrary inputs, our model does not sacrifice the interpretability and principled motivation of LDA.
End-to-end (E2E) systems have achieved competitive results compared to conventional hybrid hidden Markov model (HMM)-deep neural network based automatic speech recognition (ASR) systems. Such E2E systems are attractive due to the lack of dependence on alignments between input acoustic and output grapheme or HMM state sequence during training. This paper explores the design of an ASR-free end-to-end system for text query-based keyword search (KWS) from speech trained with minimal supervision. Our E2E KWS system consists of three sub-systems. The first sub-system is a recurrent neural network (RNN)-based acoustic auto-encoder trained to reconstruct the audio through a finite-dimensional representation. The second sub-system is a character-level RNN language model using embeddings learned from a convolutional neural network. Since the acoustic and text query embeddings occupy different representation spaces, they are input to a third feed-forward neural network that predicts whether the query occurs in the acoustic utterance or not. This E2E ASR-free KWS system performs respectably despite lacking a conventional ASR system and trains much faster.
Researchers have been overwhelmed by the explosion of research articles published by various research communities. Many research scholarly websites, search engines, and digital libraries have been created to help researchers identify potential research topics and keep up with recent progress on research of interests. However, it is still difficult for researchers to keep track of the research topic diffusion and evolution without spending a large amount of time reviewing numerous relevant and irrelevant articles. In this paper, we consider a novel topic diffusion discovery technique. Specifically, we propose using a Deep Non-negative Autoencoder with information divergence measurement that monitors evolutionary distance of the topic diffusion to understand how research topics change with time. The experimental results show that the proposed approach is able to identify the evolution of research topics as well as to discover topic diffusions in online fashions.
The growing problem of unsolicited bulk e-mail, also known as spam, has generated a need for reliable anti-spam e-mail filters. Filters of this type have so far been based mostly on manually constructed keyword patterns. An alternative approach has recently been proposed, whereby a Naive Bayesian classifier is trained automatically to detect spam messages. We test this approach on a large collection of personal e-mail messages, which we make publicly available in encrypted form contributing towards standard benchmarks. We introduce appropriate cost-sensitive measures, investigating at the same time the effect of attribute-set size, training-corpus size, lemmatization, and stop lists, issues that have not been explored in previous experiments. Finally, the Naive Bayesian filter is compared, in terms of performance, to a filter that uses keyword patterns, and which is part of a widely used e-mail reader.
Incorporating the side information of text corpus, i.e., authors, time stamps, and emotional tags, into the traditional text mining models has gained significant interests in the area of information retrieval, statistical natural language processing, and machine learning. One branch of these works is the so-called Author Topic Model (ATM), which incorporates the authorss interests as side information into the classical topic model. However, the existing ATM needs to predefine the number of topics, which is difficult and inappropriate in many real-world settings. In this paper, we propose an Infinite Author Topic (IAT) model to resolve this issue. Instead of assigning a discrete probability on fixed number of topics, we use a stochastic process to determine the number of topics from the data itself. To be specific, we extend a gamma-negative binomial process to three levels in order to capture the author-document-keyword hierarchical structure. Furthermore, each document is assigned a mixed gamma process that accounts for the multi-authors contribution towards this document. An efficient Gibbs sampling inference algorithm with each conditional distribution being closed-form is developed for the IAT model. Experiments on several real-world datasets show the capabilities of our IAT model to learn the hidden topics, authors interests on these topics and the number of topics simultaneously.