No Arabic abstract
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics cannot be reconciled with classical models that are noncontextual for ideal measurements. The first explicit derivation by Kochen and Specker was rather complex, but considerable simplifications have been achieved thereafter. We propose a systematic approach to find minimal Hardy-type and Greenberger-Horne-Zeilinger-type (GHZ-type) proofs of the Kochen-Specker theorem, these are characterized by the fact that the predictions of classical models are opposite to the predictions of quantum mechanics. Based on our results, we show that the Kochen-Specker set with 18 vectors from Cabello et al. [A. Cabello et al., Phys. Lett. A 212, 183 (1996)] is the minimal set for any dimension, verifying a longstanding conjecture by Peres. Our results allow to identify minimal contextuality scenarios and to study their usefulness for information processing.
A review is made of the field of contextuality in quantum mechanics. We study the historical emergence of the concept from philosophical and logical issues. We present and compare the main theoretical frameworks that have been derived. Finally, we focus on the complex task of establishing experimental tests of contextuality. Throughout this work, we try to show that the conceptualisation of contextuality has progressed through different complementary perspectives, before summoning them together to analyse the signification of contextuality experiments. Doing so, we argue that contextuality emerged as a discrete logical problem and developed into a quantifiable quantum resource.
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and we here address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by a $N$-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements.
We present a proof of the compositional shuffle conjecture, which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra. We first formulate the combinatorial side of the conjecture in terms of certain operators on a graded vector space $V_*$ whose degree zero part is the ring of symmetric functions $Sym[X]$ over $mathbb{Q}(q,t)$. We then extend these operators to an action of an algebra $tilde{AA}$ acting on this space, and interpret the right generalization of the $ abla$ using an involution of the algebra which is antilinear with respect to the conjugation $(q,t)mapsto (q^{-1},t^{-1})$.
Peres lattices are employed as a visual method to identify the presence of chaos in different regions of the energy spectra in the Dicke model. The coexistence of regular and chaotic regions can be clearly observed for certain energy regions, even if the coupling constant is smaller than the critical value to reach superradiance. It also exhibits the presence of two Excited-State Quantum Phase Transitions, a static and a dynamic one. The diagonalization is performed in a extended bosonic coherent basis which enable us to reach a large number of excited states with good numerical convergence.
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.