Do you want to publish a course? Click here

A Suboptimality Approach to Distributed H2 Control by Dynamic Output Feedback

119   0   0.0 ( 0 )
 Added by Junjie Jiao
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic output feedback protocols that guarantee the associated cost to be smaller than an a priori given upper bound while synchronizing the controlled network. A design method is provided to compute such protocols. The computation of the two local gains in these protocols involves two Riccati inequalities, each of dimension equal to the dimension of the state space of the agents. The largest and smallest nonzero eigenvalue of the Laplacian matrix of the network graph are also used in the computation of one of the two local gains.A simulation example is provided to illustrate the performance of the proposed protocols.



rate research

Read More

This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with identical agent dynamics and an associated global quadratic cost functional, our objective is to design suboptimal distributed control laws that guarantee the controlled network to reach consensus and the associated cost to be smaller than an a priori given upper bound. We first analyze the suboptimality for a given linear system and then apply the results to linear multiagent systems. Two design methods are then provided to compute such suboptimal distributed controllers, involving the solution of a single Riccati inequality of dimension equal to the dimension of the agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian. Furthermore, we relax the requirement of exact knowledge of the smallest nonzero and largest eigenvalue of the graph Laplacian by using only lower and upper bounds on these eigenvalues. Finally, a simulation example is provided to illustrate our design method.
This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system with identical agent dynamics and an associated $mathcal{H}_2$ cost functional, our aim is to design a distributed diffusive static protocol such that the protocol achieves state synchronization for the controlled network and such that the associated cost is smaller than an a priori given upper bound. We first analyze the $mathcal{H}_2$ performance of linear systems and then apply the results to linear multi-agent systems. Two design methods are provided to compute such a suboptimal distributed protocol. For each method, the expression for the local control gain involves a solution of a single Riccati inequality of dimension equal to the dimension of the individual agent dynamics, and the smallest nonzero and the largest eigenvalue of the graph Laplacian.
In this paper, we extend the results from Jiao et al. (2019) on distributed linear quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic tracking control for leader-follower multi-agent systems. Given one autonomous leader and a number of homogeneous followers, we introduce an associated global quadratic cost functional. We assume that the leader shares its state information with at least one of the followers and the communication between the followers is represented by a connected simple undirected graph. Our objective is to design distributed control laws such that the controlled network reaches tracking consensus and, moreover, the associated cost is smaller than a given tolerance for all initial states bounded in norm by a given radius. We establish a centralized design method for computing such suboptimal control laws, involving the solution of a single Riccati inequality of dimension equal to the dimension of the local agent dynamics, and the smallest and the largest eigenvalue of a given positive definite matrix involving the underlying graph. The proposed design method is illustrated by a simulation example.
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear matrix inequalities (LMIs) are used in the consensus analysis in this paper. Using positive systems theory and graph theory, a convex programming algorithm is developed to design appropriate protocols such that the multi-agent system is able to reach consensus with its state trajectory always remaining in the non-negative orthant. Finally, numerical simulations are given to illustrate the effectiveness of the derived theoretical results.
Distributed linear control design is crucial for large-scale cyber-physical systems. It is generally desirable to both impose information exchange (communication) constraints on the distributed controller, and to limit the propagation of disturbances to a local region without cascading to the global network (localization). Recently proposed System Level Synthesis (SLS) theory provides a framework where such communication and localization requirements can be tractably incorporated in controller design and implementation. In this work, we derive a solution to the localized and distributed H2 state feedback control problem without resorting to Finite Impulse Response (FIR) approximation. Our proposed synthesis algorithm allows a column-wise decomposition of the resulting convex program, and is therefore scalable to arbitrary large-scale networks. We demonstrate superior cost performance and computation time of the proposed procedure over previous methods via numerical simulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا