Do you want to publish a course? Click here

Exact solutions of domain wall junctions in arbitrary dimensions

137   0   0.0 ( 0 )
 Added by Minoru Eto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exact analytic solutions of static, stable, non-planar BPS domain wall junctions are obtained in extended Abelian-Higgs models in $(D+1)$-dimensional spacetime. For specific choice of mass parameters, the Lagrangian is invariant under the symmetric group ${cal S}_{D+1}$ of degree $D+1$ spontaneously broken down to ${cal S}_D$ in vacua, admitting ${cal S}_{D+1}/{cal S}_D$ domain wall junctions. In $D=2$, there are three vacua and three domain walls meeting at a junction point, in which the conventional topological charges $Y$ and $Z$ exist for the BPS domain wall junctions and the BPS domain walls, respectively as known before. In $D=3$, there are four vacua, six domain walls, four junction lines on which three domain walls meet, and one junction point on which all the six domain walls meet. We define a new topological charge $X$ for the junction point in addition to the conventional topological charges $Y$ and $Z$. In general dimensions, we find that the configuration expressed in the $D$-dimensional real space is dual to a regular $D$-simplex in the $D$-dimensional internal space and that a $d$-dimensional subsimplex of the regular $D$-simplex corresponds to a $(D-d)$-dimensional intersection. Topological charges are generalized to the level-$d$ wall charge $W_d$ for the $d$-dimensional subsimplexes.



rate research

Read More

We obtain full moduli parameters for generic non-planar BPS networks of domain walls in an extended Abelian-Higgs model with $N$ complex scalar fields, and exhaust all exact solutions in the corresponding $mathbb{C}P^{N -1}$ model. We develop a convenient description by grid diagrams which are polytopes determined by mass parameters of the model. To illustrate the validity of our method, we work out non-planar domain wall networks for lower $N$ in $3+1$ dimensions. In general, the networks can have compact vacuum bubbles, which are finite vacuum regions surrounded by domain walls, when the polytopes of the grid diagrams have inner vertices, and the size of bubbles can be controlled by moduli parameters. We also construct domain wall networks with bubbles in the shapes of the Platonic, Archimedean, Catalan, and Kepler-Poinsot solids.
A family of exact conformal field theories is constructed which describe charged black strings in three dimensions. Unlike previous charged black hole or extended black hole solutions in string theory, the low energy spacetime metric has a regular inner horizon (in addition to the event horizon) and a timelike singularity. As the charge to mass ratio approaches unity, the event horizon remains but the singularity disappears.
We investigate a coupled system of a Dirac particle and a pseudoscalar field in the form of a soliton in (1+1) dimensions and find some of its exact solutions numerically. We solve the coupled set of equations self-consistently and non-perturbatively by the use of a numerical method and obtain the bound states of the fermion and the shape of the soliton. That is the shape of the static soliton in this problem is not prescribed and is determined by the equations themselves. This work goes beyond the perturbation theory in which the back reaction of the fermion on soliton is its first order correction. We compare our results to those of an exactly solvable model in which the soliton is prescribed. We show that, as expected, the total energy of our system is lower than the prescribed one. We also compute non-perturbatively the vacuum polarization of the fermion induced by the presence of the soliton and display the results. Moreover, we compute the soliton mass as a function of the boson and fermion masses and find that the results are consistent with Skyrmes phenomenological conjecture. Finally, we show that for fixed values of the parameters, the shape of the soliton obtained from our exact solutions depends slightly on the fermionic state to which it is coupled. However, the exact shape of the soliton is always very close to the isolated kink.
226 - Yongsung Yoon 2013
We have discussed a particular class of exact cosmological solutions of the 4-dimensional low energy string gravity in the string frame. In the vacuum without matter and the 2-form fields, the exact cosmological solutions always give monotonically shrinking universes if the dilaton field is not a constant. However, in the presence of the 2-form fields and/or the radiation-like fluid in the string frame, the exact cosmological solutions show a minimum size of the universe in the evolution, but with an initial cosmological curvature singularity in the string frame.
We consider a brane cosmology scenario by taking an inflating 3D domain wall immersed in a five-dimensional Minkowski space in the presence of a stack of $N$ parallel domain walls. They are static BPS solutions of the bosonic sector of a 5D supergravity theory. However, one can move towards each other due to an attractive force in between driven by bulk particle collisions and {it resonant tunneling effect}. The accelerating domain wall is a 3-brane that is assumed to be our inflating early Universe. We analyze this inflationary phase governed by the inflaton potential induced on the brane. We compute the slow-roll parameters and show that the spectral index and the tensor-to-scalar ratio are within the recent observational data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا