Do you want to publish a course? Click here

Impact of direct digital synthesizer finite resolution on atom gravimeters

428   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English
 Authors R Karcher




Ask ChatGPT about the research

We report on the study of the impact of the finite resolution of the chirp rate applied on the frequency difference between the Raman lasers beamsplitters onto the phase of a free fall atom gravimeter. This chirp induces a phase shift that compensates the one due to gravity acceleration, allowing for its precise determination in terms of frequencies. In practice, it is most often generated by a direct digital synthesizer (DDS). Besides the effect of eventual truncation errors, we evaluate here the bias on the g measurement due to the finite time and frequency resolution of the chirp generated by the DDS, and show that it can compromise the measurement accuracy. However, this effect can be mitigated by an adequate choice of the DDS chirp parameters resulting from a trade-off between interferometer phase resolution and induced bias.



rate research

Read More

Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into account. The present results help to resolve the long-standing discrepancies; in particular, a good agreement with experimental measurements is obtained for double ionization cross-sections of $O^{1+}$, $O^{2+}$, $O^{3+}$, $C^{1+}$, and $Ar^{2+}$ ions. We show that distribution of the energy of scattered and ejected electrons, which participate in the next step of ionization, strongly affects DDI cross-sections.
149 - Ya-jie Wang , Yu-Jie Tan , 2019
This work establishes a high-precision relativistic theoretical model: start from studying finite speed of light effect based on a coordinate transformation, and further extend the research methods to analyze the overall relativistic effects. This model promotes the development of testing General Relativity with atomic interferometry.
267 - A. Gauguet 2008
We study the influence of off-resonant two photon transitions on high precision measurements with atom interferometers based on stimulated Raman transitions. These resonances induce a two photon light shift on the resonant Raman condition. The impact of this effect is investigated in two highly sensitive experiments: a gravimeter and a gyroscope-accelerometer. We show that it can lead to significant systematic phase shifts, which have to be taken into account in order to achieve best performances in term of accuracy and stability.
61 - Hari P. Saha 2019
The electron impact ionization of atomic hydrogen is calculated for incident elrctron energy 76.46 eV. The Hartree-Fock approximation is used to calculate the initial state which includes both bound and continum wave functions. The final state continuum electron wave functions are obtained in the potential of hydrogen ion. The interaction between the two final state continuum electrons is approximated with the screening potential determined variationally.
We present a novel approach to precisely synthesize arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Phys. Rev. Lett. 118, 065302 (2017)] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices, which trap atoms depending on their internal spin state. We here use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا