No Arabic abstract
Here we describe a weakly interacting Bose gas on a curved manifold, which is embedded in the three-dimensional Euclidean space.~To this end we start by considering a harmonic trap in the normal direction of the manifold, which confines the three-dimensional Bose gas in the vicinity of its surface.~Following the notion of dimensional reduction as outlined in [L.~Salasnich et al., Phys.~Rev.~A {bf 65}, 043614 (2002)], we assume a large enough trap frequency so that the normal degree of freedom of the condensate wave function can be approximately integrated out. In this way we obtain an effective condensate wave function on the quasi-two-dimensional surface of the curved manifold, where the thickness of the cloud is determined self-consistently. For the particular case when the manifold is a sphere, our equilibrium results show how the chemical potential and the thickness of the cloud increase with the interaction strength.~Furthermore, we determine within a linear stability analysis the low-lying collective excitations together with their eigenfrequencies, which turn out to reveal an instability for attractive interactions.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
Bose-Einstein condensation is a unique phase transition in that it is not driven by inter-particle interactions, but can theoretically occur in an ideal gas, purely as a consequence of quantum statistics. This chapter addresses the question emph{`How is this ideal Bose gas condensation modified in the presence of interactions between the particles? } This seemingly simple question turns out to be surprisingly difficult to answer. Here we outline the theoretical background to this question and discuss some recent measurements on ultracold atomic Bose gases that have sought to provide some answers.
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10^5 atoms. This puts 84Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.
We report on the attainment of Bose-Einstein condensation of 86Sr. This isotope has a scattering length of about +800 a0 and thus suffers from fast three-body losses. To avoid detrimental atom loss, evaporative cooling is performed at low densities around 3x10^12 cm^-3 in a large volume optical dipole trap. We obtain almost pure condensates of 5x10^3 atoms.
We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic field. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of $^{168}$Er, containing up to $7 times 10^{4}$ atoms. Feshbach spectroscopy reveals an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to 3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar Bose-Einstein condensate and we observe its characteristic d-wave collapse.