Do you want to publish a course? Click here

High-resolution spectroscopy of the GD-1 stellar stream localizes the perturber near the orbital plane of Sagittarius

67   0   0.0 ( 0 )
 Added by Ana Bonaca
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The $100^circ$-long thin stellar stream in the Milky Way halo, GD-1, has an ensemble of features that may be due to dynamical interactions. Using high-resolution MMT/Hectochelle spectroscopy we show that a spur of GD-1-like stars outside of the main stream are kinematically and chemically consistent with the main stream. In the spur, as in the main stream, GD-1 has a low intrinsic radial velocity dispersion, $sigma_{V_r}lesssim1,rm km,s^{-1}$, is metal-poor, $rm [Fe/H]approx-2.3$, with little $rm [Fe/H]$ spread and some variation in $rm [alpha/Fe]$ abundances, which point to a common globular cluster progenitor. At a fixed location along the stream, the median radial velocity offset between the spur and the main stream is smaller than $0.5,rm km,s^{-1}$, comparable to the measurement uncertainty. A flyby of a massive, compact object can change orbits of stars in a stellar stream and produce features like the spur observed in GD-1. In this scenario, the radial velocity of the GD-1 spur relative to the stream constrains the orbit of the perturber and its current on-sky position to $approx5,000,rm deg^2$. The family of acceptable perturber orbits overlaps the stellar and dark-matter debris of the Sagittarius dwarf galaxy in present-day position and velocity. This suggests that GD-1 may have been perturbed by a globular cluster or an extremely compact dark-matter subhalo formerly associated with Sagittarius.



rate research

Read More

We observe two metal-poor main sequence stars that are members of the recently-discovered Sylgr stellar stream. We present radial velocities, stellar parameters, and abundances for 13 elements derived from high-resolution optical spectra collected using the Magellan Inamori Kyocera Echelle spectrograph. The two stars have identical compositions (within 0.13 dex or 1.2 sigma) among all elements detected. Both stars are very metal poor ([Fe/H] = -2.92 +/- 0.06). Neither star is highly enhanced in C ([C/Fe] < +1.0). Both stars are enhanced in the alpha elements Mg, Si, and Ca ([alpha/Fe] = +0.32 +/- 0.06), and ratios among Na, Al, and all Fe-group elements are typical for other stars in the halo and ultra-faint and dwarf spheroidal galaxies at this metallicity. Sr is mildly enhanced ([Sr/Fe] = +0.22 +/- 0.11), but Ba is not enhanced ([Ba/Fe] < -0.4), indicating that these stars do not contain high levels of neutron-capture elements. The Li abundances match those found in metal-poor unevolved field stars and globular clusters (log epsilon (Li) = 2.05 +/- 0.07), which implies that environment is not a dominant factor in determining the Li content of metal-poor stars. The chemical compositions of these two stars cannot distinguish whether the progenitor of the Sylgr stream was a dwarf galaxy or a globular cluster. If the progenitor was a dwarf galaxy, the stream may originate from a dense region such as a nuclear star cluster. If the progenitor was a globular cluster, it would be the most metal-poor globular cluster known.
139 - Nestor Mirabal , Ana Bonaca 2021
The detection of dark matter subhalos without a stellar component in the Galactic halo remains a challenge. We use supervised machine learning to identify high-latitude gamma-ray sources with dark matter-like spectra among unassociated gamma-ray sources in the 4FGL-DR2. Out of 843 4FGL-DR2 unassociated sources at $|b| geq 10mathrm{^circ}$, we select 73 dark matter subhalo candidates. Of the 69 covered by the Neil Gehrels Swift Observatory (Swift), 17 show at least one X-ray source within the 95% LAT error ellipse and 52 where we identify no new sources. This latest inventory of dark subhalos candidates allows us to investigate the possible dark matter substructure responsible for the perturbation in the GD-1 stellar stream. In particular, we examine the possibility that the alleged GD-1 dark subhalo may appear as a 4FGL-DR2 gamma-ray source from dark matter annihilation into Standard Model particles.
117 - E. Luque , A. Pieres , B. Santiago 2016
We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111-1341 and DES J0225+0304, are located at a heliocentric distance of ~ 25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~ 1.73 kpc (DES J0111-1341) and ~ 0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (r_h ~ 4.55 pc) and luminosity (M_V ~ +0.3) of DES J0111-1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (r_h ~ 18.55 pc) and luminosity (M_V ~ -1.1) of DES J0225+0304 place it in an ambiguous region of size-luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (-2.18 < [Fe/H] < -0.95) and distance gradient (23 kpc < D_sun < 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111-1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.
241 - Sergey E. Koposov 2009
The narrow GD-1 stream of stars, spanning 60 deg on the sky at a distance of ~10 kpc from the Sun and ~15 kpc from the Galactic center, is presumed to be debris from a tidally disrupted star cluster that traces out a test-particle orbit in the Milky Way halo. We combine SDSS photometry, USNO-B astrometry, and SDSS and Calar Alto spectroscopy to construct a complete, empirical 6-dimensional phase-space map of the stream. We find that an eccentric orbit in a flattened isothermal potential describes this phase-space map well. Even after marginalizing over the stream orbital parameters and the distance from the Sun to the Galactic center, the orbital fit to GD-1 places strong constraints on the circular velocity at the Suns radius V_c=224 pm 13 km/s and total potential flattening q_Phi=0.87^{+0.07}_{-0.04}. When we drop any informative priors on V_c the GD-1 constraint becomes V_c=221 pm 18 km/s. Our 6-D map of GD-1 therefore yields the best current constraint on V_c and the only strong constraint on q_Phi at Galactocentric radii near R~15 kpc. Much, if not all, of the total potential flattening may be attributed to the mass in the stellar disk, so the GD-1 constraints on the flattening of the halo itself are weak: q_{Phi,halo}>0.89 at 90% confidence. The greatest uncertainty in the 6-D map and the orbital analysis stems from the photometric distances, which will be obviated by Gaia.
Using a variety of stellar tracers -- blue horizontal branch stars, main-sequence turn-off stars and red giants -- we follow the path of the Sagittarius (Sgr) stream across the sky in Sloan Digital Sky Survey data. Our study presents new Sgr debris detections, accurate distances and line-of-sight velocities that together help to shed new light on the puzzle of the Sgr tails. For both the leading and the trailing tail, we trace the points of their maximal extent, or apo-centric distances, and find that they lie at $R^L$ = 47.8 $pm$ 0.5 kpc and $R^T$ = 102.5 $pm$ 2.5 kpc respectively. The angular difference between the apo-centres is 93.2 $pm$ 3.5 deg, which is smaller than predicted for logarithmic haloes. Such differential orbital precession can be made consistent with models of the Milky Way in which the dark matter density falls more quickly with radius. However, currently, no existing Sgr disruption simulation can explain the entirety of the observational data. Based on its position and radial velocity, we show that the unusually large globular cluster NGC 2419 can be associated with the Sgr trailing stream. We measure the precession of the orbital plane of the Sgr debris in the Milky Way potential and show that, surprisingly, Sgr debris in the primary (brighter) tails evolves differently to the secondary (fainter) tails, both in the North and the South.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا