No Arabic abstract
Which variables does an agent have an incentive to control with its decision, and which variables does it have an incentive to respond to? We formalise these incentives, and demonstrate unique graphical criteria for detecting them in any single decision causal influence diagram. To this end, we introduce structural causal influence models, a hybrid of the influence diagram and structural causal model frameworks. Finally, we illustrate how these incentives predict agent incentives in both fairness and AI safety applications.
We present a framework for analysing agent incentives using causal influence diagrams. We establish that a well-known criterion for value of information is complete. We propose a new graphical criterion for value of control, establishing its soundness and completeness. We also introduce two new concepts for incentive analysis: response incentives indicate which changes in the environment affect an optimal decision, while instrumental control incentives establish whether an agent can influence its utility via a variable X. For both new concepts, we provide sound and complete graphical criteria. We show by example how these results can help with evaluating the safety and fairness of an AI system.
Agents are systems that optimize an objective function in an environment. Together, the goal and the environment induce secondary objectives, incentives. Modeling the agent-environment interaction using causal influence diagrams, we can answer two fundamental questions about an agents incentives directly from the graph: (1) which nodes can the agent have an incentivize to observe, and (2) which nodes can the agent have an incentivize to control? The answers tell us which information and influence points need extra protection. For example, we may want a classifier for job applications to not use the ethnicity of the candidate, and a reinforcement learning agent not to take direct control of its reward mechanism. Different algorithms and training paradigms can lead to different causal influence diagrams, so our method can be used to identify algorithms with problematic incentives and help in designing algorithms with better incentives.
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are, how they come to exist, and how a system behaves when it uses them. We begin by offering an interpretation of symbols as entities whose meaning is established by convention. But crucially, something is a symbol only for those who demonstrably and actively participate in this convention. We then outline how this interpretation thematically unifies the behavioural traits humans exhibit when they use symbols. This motivates our proposal that the field place a greater emphasis on symbolic behaviour rather than particular computational mechanisms inspired by more restrictive interpretations of symbols. Finally, we suggest that AI research explore social and cultural engagement as a tool to develop the cognitive machinery necessary for symbolic behaviour to emerge. This approach will allow for AI to interpret something as symbolic on its own rather than simply manipulate things that are only symbols to human onlookers, and thus will ultimately lead to AI with more human-like symbolic fluency.
How should we decide which fairness criteria or definitions to adopt in machine learning systems? To answer this question, we must study the fairness preferences of actual users of machine learning systems. Stringent parity constraints on treatment or impact can come with trade-offs, and may not even be preferred by the social groups in question (Zafar et al., 2017). Thus it might be beneficial to elicit what the groups preferences are, rather than rely on a priori defined mathematical fairness constraints. Simply asking for self-reported rankings of users is challenging because research has shown that there are often gaps between peoples stated and actual preferences(Bernheim et al., 2013). This paper outlines a research program and experimental designs for investigating these questions. Participants in the experiments are invited to perform a set of tasks in exchange for a base payment--they are told upfront that they may receive a bonus later on, and the bonus could depend on some combination of output quantity and quality. The same group of workers then votes on a bonus payment structure, to elicit preferences. The voting is hypothetical (not tied to an outcome) for half the group and actual (tied to the actual payment outcome) for the other half, so that we can understand the relation between a groups actual preferences and hypothetical (stated) preferences. Connections and lessons from fairness in machine learning are explored.
By studying the underlying policies of decision-making agents, we can learn about their shortcomings and potentially improve them. Traditionally, this has been done either by examining the agents implementation, its behaviour while it is being executed, its performance with a reward/fitness function or by visualizing the density of states the agent visits. However, these methods fail to describe the policys behaviour in complex, high-dimensional environments or do not scale to thousands of policies, which is required when studying training algorithms. We propose policy supervectors for characterizing agents by the distribution of states they visit, adopting successful techniques from the area of speech technology. Policy supervectors can characterize policies regardless of their design philosophy (e.g. rule-based vs. neural networks) and scale to thousands of policies on a single workstation machine. We demonstrate methods applicability by studying the evolution of policies during reinforcement learning, evolutionary training and imitation learning, providing insight on e.g. how the search space of evolutionary algorithms is also reflected in agents behaviour, not just in the parameters.