Do you want to publish a course? Click here

Deformations of Gabor frames on the adeles and other locally compact abelian groups

78   0   0.0 ( 0 )
 Added by Ulrik Enstad
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We generalize Feichtinger and Kaiblingers theorem on linear deformations of uniform Gabor frames to the setting of a locally compact abelian group $G$. More precisely, we show that Gabor frames over lattices in the time-frequency plane of $G$ with windows in the Feichtinger algebra are stable under small deformations of the lattice by an automorphism of ${G}times widehat{G}$. The topology we use on the automorphisms is the Braconnier topology. We characterize the groups in which the Balian-Low theorem for the Feichtinger algebra holds as exactly the groups with noncompact identity component. This generalizes a theorem of Kaniuth and Kutyniok on the zeros of the Zak transform on locally compact abelian groups. We apply our results to a class of number-theoretic groups, including the adele group associated to a global field.



rate research

Read More

We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorff space. This answers an open question by Anantharaman-Delaroche.
Let $G$ be a compact group. For $1leq pleqinfty$ we introduce a class of Banach function algebras $mathrm{A}^p(G)$ on $G$ which are the Fourier algebras in the case $p=1$, and for $p=2$ are certain algebras discovered in cite{forrestss1}. In the case $p ot=2$ we find that $mathrm{A}^p(G)cong mathrm{A}^p(H)$ if and only if $G$ and $H$ are isomorphic compact groups. These algebras admit natural operator space structures, and also weighte
This paper concerns the study of regular Fourier hypergroups through multipliers of their associated Fourier algebras. We establish hypergroup analogues of well-known characterizations of group amenability, introduce a notion of weak amenability for hypergroups, and show that every discrete commutative hypergroup is weakly amenable with constant 1. Using similar techniques, we provide a sufficient condition for amenability of hypergroup Fourier algebras, which, as an immediate application, answers one direction of a conjecture of Azimifard--Samei--Spronk [J. Funct. Anal. 256(5) 1544-1564, 2009] on the amenability of $ZL^1(G)$ for compact groups $G$. In the final section we consider Fourier algebras of hypergroups arising from compact quantum groups $mathbb{G}$, and in particular, establish a completely isometric isomorphism with the center of the quantum group algebra for compact $mathbb{G}$ of Kac type.
81 - Diana T. Stoeva 2021
The main purpose of the paper is to give a characterization of all compactly supported dual windows of a Gabor frame. As an application, we consider an iterative procedure for approximation of the canonical dual window via compactly supported dual windows on every step. In particular, the procedure allows to have approximation of the canonical dual window via dual windows from certain modulation spaces or from the Schwartz space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا