False Data Injection Attacks on Hybrid AC/HVDC Interconnected System with Virtual Inertia -- Vulnerability, Impact and Detection


Abstract in English

Power systems are moving towards hybrid AC/DC grids with the integration of HVDC links, renewable resources and energy storage modules. New models of frequency control have to consider the complex interactions between these components. Meanwhile, more attention should be paid to cyber security concerns as these control strategies highly depend on data communications which may be exposed to cyber attacks. In this regard, this article aims to analyze the false data injection (FDI) attacks on the AC/DC interconnected system with virtual inertia and develop advanced diagnosis tools to reveal their occurrence. We build an optimization-based framework for the purpose of vulnerability and attack impact analysis. Considering the attack impact on the system frequency stability, it is shown that the hybrid grid with parallel AC/DC links and emulated inertia is more vulnerable to the FDI attacks, compared with the one without virtual inertia and the normal AC system. We then propose a detection approach to detect and isolate each FDI intrusion with a sufficient fast response, and even recover the attack value. In addition to theoretical results, the effectiveness of the proposed methods is validated through simulations on the two-area AC/DC interconnected system with virtual inertia emulation capabilities.

Download