No Arabic abstract
The emergence of scanning probe and electron beam imaging techniques have allowed quantitative studies of atomic structure and minute details of electronic and vibrational structure on the level of individual atomic units. These microscopic descriptors in turn can be associated with the local symmetry breaking phenomena, representing stochastic manifestation of underpinning generative physical model. Here, we explore the reconstruction of exchange integrals in the Hamiltonian for the lattice model with two competing interactions from the observations of the microscopic degrees of freedom and establish the uncertainties and reliability of such analysis in a broad parameter-temperature space. As an ancillary task, we develop a machine learning approach based on histogram clustering to predict phase diagrams efficiently using a reduced descriptor space. We further demonstrate that reconstruction is possible well above the phase transition and in the regions of the parameter space when the macroscopic ground state of the system is poorly defined due to frustrated interactions. This suggests that this approach can be applied to the traditionally complex problems of condensed matter physics such as ferroelectric relaxors and morphotropic phase boundary systems, spin and cluster glasses, quantum systems once the local descriptors linked to the relevant physical behaviors are known.
Experimental advances in condensed matter physics and material science have enabled ready access to atomic-resolution images, with resolution of modern tools often sufficient to extract minute details of symmetry-breaking distortions such as polarization, octahedra tilts, or other structure-coupled order parameters. The patterns of observed distortions in turn contain the information on microscopic driving forces defining the development of materials microstructure and associated thermodynamics. However, the analysis of underpinning physical models from experimentally observed microscopic degrees of freedom remains a largely unresolved issue. Here, we explore such an approach using the paradigmatic Ising model on a square lattice. We show that the microscopic parameters of the Ising model both for ferromagnetic and antiferromagnetic case can be extracted from the spin configurations for temperatures an order of magnitude higher than the phase transition and perform uncertainty analysis for such reconstructions. This suggests that microscopic observations of materials with sufficiently high precision can provide information on generative physics at temperatures well above corresponding phase transition, opening new horizons for scientific exploration via high-resolution imaging.
Temperature and magnetic field studies of the elastic constants of the chromium spinel CdCr_2O_4 show pronounced anomalies related to strong spin-phonon coupling in this frustrated antiferromagnet. A detailed comparison of the longitudinal acoustic mode propagating along the [111] direction with theory based on an exchange-striction mechanism leads to an estimate of the strength of the magneto-elastic interaction. The derived spin-phonon coupling constant is in good agreement with previous determinations based on infrared absorption. Further insight is gained from intermediate and high magnetic field experiments in the field regime of the magnetization plateau. The role of the antisymmetric Dzyaloshinskii-Moriya interaction discussed and we compare the spin-phonon coupling in CdCr_2O_4 in both the ordered and disordered states.
We study the behavior of a moving wall in contact with a particle gas and subjected to an external force. We compare the fluctuations of the system observed in the microcanonical and canonical ensembles, at varying the number of particles. Static and dynamic correlations signal significant differences between the two ensembles. Furthermore, velocity-velocity correlations of the moving wall present a complex two-time relaxation which cannot be reproduced by a standard Langevin-like description. Quite remarkably, increasing the number of gas particles in an elongated geometry, we find a typical timescale, related to the interaction between the partitioning wall and the particles, which grows macroscopically.
Scalar singlet dark matter in anomaly-free composite Higgs models is accompanied by exotic particles to which the dark matter annihilates. The latter can therefore freeze out even in the absence of couplings to the Standard Model. In this regime, both current and future direct detection constraints can be avoided. Moreover, due to the different decay modes of the extra particles, the dark matter candidate can even escape indirect detection constraints. Assessing this issue requires dedicated simulations of the gamma ray spectrum, that we provide in the present article in the context of $SO(7)/SO(6)$. For the parameter space region that evades constraints from dark matter experiments, we develop new analyses to be performed at a future 100 TeV collider based on the search of the new particles produced in the decay of heavy vector-like quarks.
Fusion cross-sections are computed for the $^{40}$Ca$+^{40}$Ca system over a wide energy range with two microscopic approaches where the only phenomenological input is the Skyrme energy density functional. The first method is based on the coupled-channels formalism, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock technique and the deformation parameters of vibrational states computed with the time-dependent Hartree-Fock (TDHF) approach. The second method is based on the density-constrained TDHF method to generate nucleus-nucleus potentials from TDHF evolution. Both approaches incorporate the effect of couplings to internal degrees of freedoms in different ways. The predictions are in relatively good agreement with experimental data.