Do you want to publish a course? Click here

A planar Airy beam light-sheet for two-photon microscopy

49   0   0.0 ( 0 )
 Added by Tom Vettenburg
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the first planar Airy light-sheet microscope. Fluorescence light-sheet microscopy has become the method of choice to study large biological samples with cellular or sub-cellular resolution. The propagation-invariant Airy beam enables a ten-fold increase in field-of-view with single-photon excitation; however, the characteristic asymmetry of the light-sheet limits its potential for multi-photon excitation. Here we show how a planar light-sheet can be formed from the curved propagation-invariant Airy beam. The resulting symmetric light sheet excites two-photon fluorescence uniformly across an extended field-of-view without the need for deconvolution. We demonstrate the method for rapid two-photon imaging of large volumes of neuronal tissue.



rate research

Read More

We report an experimental observation of quantum Airy disk diffraction pattern using an entangled two-photon source. In contrast to the previous quantum lithography experiments where the subwavelength diffraction patterns were observed in the far field limit, we perform the Fraunhofer diffraction experiment with a convex lens. The experimental result shows that the two-photon Airy disk is provided with the super-resolution spot, which surpasses the classical diffraction limit. In particular, the spot size can be well controlled by the focal length, which adapted to optical super-focusing. Our experiment can promote potential application of quantum lithography.
279 - Chuangjie Xu 2020
In this letter, we introduce a new class of light beam, the circular symmetric Airy beam (CSAB), which arises from the extensions of the one dimensional (1D) spectrum of Airy beam from rectangular coordinates to cylindrical ones. The CSAB propagates at initial stages with a single central lobe that autofocuses and then defocuses into the multi-rings structure. Then, these multi-rings perform the outward accelerations during the propagation. That means the CSAB has the inverse propagation of the abruptly autofocusing Airy beam. Besides, the propagation features of the circular symmetric Airy vortex beam (CSAVB) also have been investigated in detail. Our results offer a complementary tool with respect to the abruptly autofocusing Airy beam for practical applications.
111 - Bin Bai , Jianbin Liu , Yu Zhou 2017
Two-photon superbunching of pseudothermal light is observed with single-mode continuous-wave laser light in a linear optical system. By adding more two-photon paths via three rotating ground glasses,g(2)(0) = 7.10 is experimentally observed. The second-order temporal coherence function of superbunching pseudothermal light is theoretically and experimentally studied in detail. It is predicted that the degree of coherence of light can be increased dramatically by adding more multi-photon paths. For instance, the degree of the second- and third-order coherence of the superbunching pseudothermal light with five rotating ground glasses can reach 32 and 7776, respectively. The results are helpful to understand the physics of superbunching and to improve the visibility of thermal light ghost imaging.
283 - Chao Hang , Guoxiang Huang 2014
We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.
We present a new flexible high speed laser scanning confocal microscope and its extension by an astigmatism particle tracking device (APTV). Many standard confocal microscopes use either a single laser beam to scan the sample at relatively low overall frame rate, or many laser beam to simultaneously scan the sample and achieve a high overall frame rate. Single-laser-beam confocal microscope often use a point detector to acquire the image. To achieve high overall frame rates, we use, next to the standard 2D probe scanning unit, a second 2D scan unit projecting the image directly on a 2D CCD-sensor (re-scan configuration). Using only a single laser beam eliminates cross-talk and leads to an imaging quality that is independent of the frame rate with a lateral resolution of 0.235unit{mu m}. The design described here is suitable for high frame rate, i.e., for frame rates well above video rate (full frame) up to a line rate of 32kHz. The dwell time of the laser focus on any spot in the sample (122ns) is significantly shorter than in standard confocal microscopes (in the order of milli or microseconds). This short dwell time reduces phototoxicity and bleaching of fluorescent molecules. The new design opens further flexibility and facilitates coupling to other optical methods. The setup can easily be extended by an APTV device to measure three dimensional dynamics while being able to show high resolution confocal structures. Thus one can use the high resolution confocal information synchronized with an APTV dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا