Generalized Local IV with Unordered Multiple Treatment Levels: Identification, Efficient Estimation, and Testable Implication


Abstract in English

This paper studies the econometric aspects of the generalized local IV framework defined using the unordered monotonicity condition, which accommodates multiple levels of treatment and instrument in program evaluations. The framework is explicitly developed to allow for conditioning covariates. Nonparametric identification results are obtained for a wide range of policy-relevant parameters. Semiparametric efficiency bounds are computed for these identified structural parameters, including the local average structural function and local average structural function on the treated. Two semiparametric estimators are introduced that achieve efficiency. One is the conditional expectation projection estimator defined through the nonparametric identification equation. The other is the double/debiased machine learning estimator defined through the efficient influence function, which is suitable for high-dimensional settings. More generally, for parameters implicitly defined by possibly non-smooth and overidentifying moment conditions, this study provides the calculation for the corresponding semiparametric efficiency bounds and proposes efficient semiparametric GMM estimators again using the efficient influence functions. Then an optimal set of testable implications of the model assumption is proposed. Previous results developed for the binary local IV model and the multivalued treatment model under unconfoundedness are encompassed as special cases in this more general framework. The theoretical results are illustrated by an empirical application investigating the return to schooling across different fields of study, and a Monte Carlo experiment.

Download