No Arabic abstract
We report the results of decade-long (2008-2018) $gamma$-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, $it{Fermi}$ and $it{Swift}$ data, as well as polarimetric and spectroscopic data. The X-ray and $gamma$-ray light curves correlate well, with no delay > 3 hours, implying general co-spatiality of the emission regions. The $gamma$-ray-optical flux-flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz VLBA images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain $gamma$-ray variability on very short time scales. The Mg II emission line flux in the `blue and `red wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands we find progressive delays of the most prominent light curve maxima with decreasing frequency, as expected from the frequency dependence of the $tau=1$ surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at $sim5$ GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet.
We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006-2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman Alpha intervening system at z = 0.525. Two major outbursts were observed in 2006-2007 and in 2012-2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio-optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the gamma-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches about 19 per cent during the early stage of the 2012-2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarisation angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour or structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg II broad emission line with an essentially stable flux of 6.2 e-15 erg cm-2 s-1 and a full width at half-maximum of 2053 km s-1.
We present the results of a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multi-frequency observations were obtained using several ground and space based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend at a time scale of ~350 days. Episodes of fast variability recur on time scales of ~ 60-70 days. The intense and simultaneous activity at optical and gamma-ray frequencies favors the SSC mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/gamma-ray activity period. The radio flares are characterized by a rising and a decaying stage and are in agreement with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield a robust and self-consistent lower limits of delta > 20 and equipartition magnetic field B_eq > 0.36 G. Causality arguments constrain the size of emission region theta < 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and gamma-rays. The optical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.
An exhaustive analysis of 9-year optical R-band photopolarimetric data of the flat-spectrum radio quasar 3C279 from 2008 February 27 to 2017 May 25 is presented, alongside with multiwavelength observing campaigns performed during the flaring activity exhibited in 2009 February/March, 2011 June, 2014 March/April, 2015 June and 2017 February. In the R-band, this source showed the maximum brightness state of $13.68pm 0.11$ mag ($1.36pm0.20$ mJy) on 2017 March 02, and the lowest brightness state ever recorded of $18.20pm 0.87$ mag ($0.16pm0.03$ mJy) on 2010 June 17. During the entire period of observations, the polarization degree varied between $0.48pm0.17$% and $31.65pm0.77$% and the electric vector position angle exhibited large rotations between $82.98^circ pm0.92$ and $446.32^circ pm1.95$. Optical polarization data show that this source has a stable polarized component that varied from $sim$6% (before the 2009 flare) to $sim$13% after the flare. The overall behavior of our polarized variability data supports the scenario of jet precessions as responsible of the observed large rotations of the electric vector position angle. Discrete correlation function analysis show that the lags between gamma-rays and X-rays compared to the optical R-band fluxes are $Delta t sim$ 31 d and $1$ d in 2009. Lags were also found among gamma-rays compared with X-rays and radio of $Delta t sim$ 30 d and $43$ d in 2011, and among radio and optical-R band of $Delta t sim$ 10 d in 2014. A very intense flare in 2017 was observed in optical bands with a dramatic variation in the polarization degree (from $sim$ 6% to 20%) in 90 days without exhibiting flaring activity in other wavelengths.
We present a study of the very high energy (VHE; E > 100 GeV) gamma-ray emission of the blazar PKS 1424+240 observed with the MAGIC telescopes. The primary aim of this paper is the multiwavelength spectral characterization and modeling of this blazar, which is made particularly interesting by the recent discovery of a lower limit of its redshift of z > 0.6 and makes it a promising candidate to be the most distant VHE source. The source has been observed with the MAGIC telescopes in VHE gamma rays for a total observation time of ~33.6 h from 2009 to 2011. The source was marginally detected in VHE gamma rays during 2009 and 2010, and later, the detection was confirmed during an optical outburst in 2011. The combined significance of the stacked sample is ~7.2 sigma. The differential spectra measured during the different campaigns can be described by steep power laws with the indices ranging from 3.5 +/- 1.2 to 5.0 +/- 1.7. The MAGIC spectra corrected for the absorption due to the extragalactic background light connect smoothly, within systematic errors, with the mean spectrum in 2009-2011 observed at lower energies by the Fermi-LAT. The absorption-corrected MAGIC spectrum is flat with no apparent turn down up to 400 GeV. The multiwavelength light curve shows increasing flux in radio and optical bands that could point to a common origin from the same region of the jet. The large separation between the two peaks of the constructed non-simultaneous spectral energy distribution also requires an extremely high Doppler factor if an one zone synchrotron self-Compton model is applied. We find that a two-component synchrotron self-Compton model describes the spectral energy distribution of the source well, if the source is located at z~0.6.
We investigate the nature and classification of PMNJ1603-4904, a bright radio source close to the Galactic plane, which is associated with one of the brightest hard-spectrum gamma-ray sources detected by Fermi/LAT. It has previously been classified as a low-peaked BL Lac object based on its broadband emission and the absence of optical emission lines. Optical measurements, however, suffer strongly from extinction and the absence of pronounced short-time gamma-ray variability over years of monitoring is unusual for a blazar. We are combining new and archival multiwavelength data in order to reconsider the classification and nature of this unusual gamma-ray source. For the first time, we study the radio morphology at 8.4GHz and 22.3GHz, and its spectral properties on milliarcsecond (mas) scales, based on VLBI observations from the TANAMI program. We combine the resulting images with multiwavelength data in the radio, IR, optical/UV, X-ray, and gamma-ray regimes. PMNJ1603-4904 shows a symmetric brightness distribution at 8.4GHz on mas-scales, with the brightest, and most compact component in the center of the emission region. The morphology is reminiscent of a Compact Symmetric Object (CSO). Such objects have been predicted to produce gamma-ray emission but have not been detected as a class by Fermi/LAT so far. Sparse (u, v)-coverage at 22.3GHz prevents an unambiguous modeling of the source morphology. IR measurements reveal an excess in the spectral energy distribution (SED), which can be modeled with a blackbody with a temperature of about 1600K, and which is usually not present in blazar SEDs. The VLBI data and the shape of the SED challenge the current blazar classification. PMNJ1603-4904 seems to be either a highly peculiar BL Lac object or a misaligned jet source. In the latter case, the intriguing VLBI structure opens room for a possible classification as a gamma-ray bright CSO.