No Arabic abstract
The evolution of low-mass stars into red giants is still poorly understood. During this evolution the core of the star contracts and, simultaneously, the envelope expands -- a process known as the `mirror. Additionally, there is a short phase where the trend for increasing luminosity is reversed. This is known as the red-giant-branch bump. We explore the underlying physical reasons for these two phenomena by considering the specific entropy distribution in the star and its temporal changes. We find that between the luminosity maximum and luminosity minimum of the bump there is no mirror present and the star is fully contracting. The contraction is halted and the star regains its mirror when the hydrogen-burning shell reaches the mean molecular weight discontinuity. This marks the luminosity minimum of the bump.
We suggest to use the shape of the Red Giant Branch (RGB) Bump in metal-rich globular clusters as a diagnostic of partial mixing processes between the base of the convective envelope and the H-burning shell. The Bump located along the differential luminosity function of cluster RGB stars is a key observable to constrain the H-profile inside these structures. In fact, standard evolutionary models that account for complete mixing in the convective unstable layers and radiative equilibrium in the innermost regions do predict that the first dredge-up lefts over a very sharp H-discontinuity at the bottom of the convective region. Interestingly enough we found that both atomic diffusion and a moderate convective overshooting at the base of the convective region marginally affects the shape of the RGB Bump in the differential Luminosity Function (LF). As a consequence, we performed several numerical experiments to estimate whether plausible assumptions concerning the smoothing of the H-discontinuity, due to the possible occurrence of extra-mixing below the convective boundary, affects the shape of the RGB Bump. We found that the difference between the shape of RGB Bump predicted by standard and by smoothed models can be detected if the H-discontinuity is smoothed over an envelope region whose thickness is equal or larger than 0.5 pressure scale heights. Finally, we briefly discuss the comparison between theoretical predictions and empirical data in metal-rich, reddening free Galactic Globular Clusters (GGCs) to constrain the sharpness of the H-profile inside RGB stars.
The onset of cool massive winds in evolved giants is correlated with an evolutionary feature on the red giant branch known as the bump. Also at the bump, shear instability in the star leads to magnetic fields that occur preferentially on small length scales. Pneuman (1983) has suggested that the emergence of small scale flux tubes in the Sun can give rise to enhanced acceleration of the solar wind as a result of plasmoid acceleration (the melon seed mechanism). In this paper, we examine the Pneuman formalism to determine if it may shed some light on the process that drives mass loss from stars above the bump. Because we do not currently have detailed information for some of the relevant physical parameters, we are not yet able to derive a detailed model. Instead, our goal in this paper is to explore a proof of concept. Using parameters that are known to be plausible in cool giants, we find that the total mass loss rate from such stars can be replicated. Moreover, we find that the radial profile of the wind speed in such stars can be steep or shallow depending on the fraction of the mass loss which is contained in the plasmoids. This is consistent with empirical data which indicate that the velocity profiles of winds from cool giants range from shallow to steep.
CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that gives us their heights in the power spectra. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights comparable to radial ones. We stress the importance of the radiative damping in the determination of the height of mixed modes. Finally, we derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability of mixed-modes.
We present a comparison between theoretical models and the observed magnitude difference between the horizontal branch and the red giant branch bump for a sample of 53 clusters. We find a general agreement, though some discrepancy is still present at the two extremes of the metallicity range of globular clusters.
We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar models that sample the mass range of the transition with a fine mass step equal to ${rm 0.01M_odot}$. We find that for a stellar population with a given initial chemical composition, there is a critical age (of 1.1-1.2~Gyr) around which a decrease in age of just 20-30 million years causes a drastic drop in the red giant branch tip brightness. We also find a narrow age range (a few $10^7$ yr) around the transition, characterized by the luminosity of the red giant branch bump being brighter than the luminosity of He ignition. We discuss a possible link between this occurrence and observations of Li-rich core He-burning stars.