Building on previous work by the present authors [Proc. London Math. Soc. 119(2):358--378, 2019], we obtain a precise asymptotic estimate for the number $g_n$ of labelled 4-regular planar graphs. Our estimate is of the form $g_n sim gcdot n^{-7/2} rho^{-n} n!$, where $g>0$ is a constant and $rho approx 0.24377$ is the radius of convergence of the generating function $sum_{nge 0}g_n x^n/n!$, and conforms to the universal pattern obtained previously in the enumeration of planar graphs. In addition to analytic methods, our solution needs intensive use of computer algebra in order to work with large systems of polynomials equations. In particular, we use evaluation and Lagrange interpolation in order to compute resultants of multivariate polynomials. We also obtain asymptotic estimates for the number of 2- and 3-connected 4-regular planar graphs, and for the number of 4-regular simple maps, both connected and 2-connected.