Disorder effects in the two-dimensional Lieb lattice and its extensions


Abstract in English

We study the localization properties of the two-dimensional Lieb lattice and its extensions in the presence of disorder using transfer matrix method and finite-size scaling. We find that all states in the Lieb lattice and its extensions are localized for $W geq 1$. Clear differences in the localization properties between disordered flat band and disordered dispersive bands are identified. Our results complement previous experimental studies of clean photonic Lieb lattices and provide information about their stability with respect to disorder.

Download