Do you want to publish a course? Click here

Stable and Robust LQR Design via Scenario Approach

332   0   0.0 ( 0 )
 Added by Aleksandr Aravkin
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Linear Quadratic Regulator (LQR) design is one of the most classical optimal control problems, whose well-known solution is an input sequence expressed as a state-feedback. In this work, finite-horizon and discrete-time LQR is solved under stability constraints and uncertain system dynamics. The resulting feedback controller balances cost value and closed-loop stability. Robustness of the solution is modeled using the scenario approach, without requiring any probabilistic description of the uncertainty in the system matrices. The new methods are tested and compared on the Leslie growth model, where we control population size while minimizing a suitable finite-horizon cost function.



rate research

Read More

In this paper we propose a new computational method for designing optimal regulators for high-dimensional nonlinear systems. The proposed approach leverages physics-informed machine learning to solve high-dimensional Hamilton-Jacobi-Bellman equations arising in optimal feedback control. Concretely, we augment linear quadratic regulators with neural networks to handle nonlinearities. We train the augmented models on data generated without discretizing the state space, enabling application to high-dimensional problems. We use the proposed method to design a candidate optimal regulator for an unstable Burgers equation, and through this example, demonstrate improved robustness and accuracy compared to existing neural network formulations.
Optimal actuator design for a vibration control problem is calculated. The actuator shape is optimized according to the closed-loop performance of the resulting linear-quadratic regulator and a penalty on the actuator size. The optimal actuator shape is found by means of shape calculus and a topological derivative of the linear-quadratic regulator (LQR) performance index. An abstract framework is proposed based on the theory for infinite-dimensional optimization of both the actuator shape and the associated control problem. A numerical realization of the optimality condition is presented for the actuator shape using a level-set method for topological derivatives. A Numerical example illustrating the design of actuator for Euler-Bernoulli beam model is provided.
154 - Chao Shang , Fengqi You 2018
Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances.
This paper addresses the problem of utility maximization under uncertain parameters. In contrast with the classical approach, where the parameters of the model evolve freely within a given range, we constrain them via a penalty function. We show that this robust optimization process can be interpreted as a two-player zero-sum stochastic differential game. We prove that the value function satisfies the Dynamic Programming Principle and that it is the unique viscosity solution of an associated Hamilton-Jacobi-Bellman-Isaacs equation. We test this robust algorithm on real market data. The results show that robust portfolios generally have higher expected utilities and are more stable under strong market downturns. To solve for the value function, we derive an analytical solution in the logarithmic utility case and obtain accurate numerical approximations in the general case by three methods: finite difference method, Monte Carlo simulation, and Generative Adversarial Networks.
Uncertainty sets are at the heart of robust optimization (RO) because they play a key role in determining the RO models tractability, robustness, and conservativeness. Different types of uncertainty sets have been proposed that model uncertainty from various perspectives. Among them, polyhedral uncertainty sets are widely used due to their simplicity and flexible structure to model the underlying uncertainty. However, the conventional polyhedral uncertainty sets present certain disadvantages; some are too conservative while others lead to computationally expensive RO models. This paper proposes a systematic approach to develop data-driven polyhedral uncertainty sets that mitigate these drawbacks. The proposed uncertainty sets are polytopes induced by a given set of scenarios, capture correlation information between uncertain parameters, and allow for direct trade-offs between tractability and conservativeness issue of conventional polyhedral uncertainty sets. To develop these uncertainty sets, we use principal component analysis (PCA) to transform the correlated scenarios into their uncorrelated principal components and to shrink the uncertainty space dimensionality. Thus, decision-makers can use the number of the leading principal components as a tool to trade-off tractability, conservativeness, and robustness of RO models. We quantify the quality of the lower bound of a static RO problem with a scenario-induced uncertainty set by deriving a theoretical bound on the optimality gap. Additionally, we derive probabilistic guarantees for the performance of the proposed scenario-induced uncertainty sets by developing explicit lower bounds on the number of scenarios. Finally, we demonstrate the practical applicability of the proposed uncertainty sets to trade-off tractability, robustness, and conservativeness by examining a range of knapsack and power grid problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا