Invariant Tori of a Two Dimensional Periodic System with the Linear-Cubic Unperturbed Part


Abstract in English

Two classes of time-periodic systems of ordinary differential equations with a small nonnegative parameter, those with fast and slow time, are studied. Right-hand sides of these systems are three times continuously differentiable with respect to phase variables and the parameter, the corresponding unperturbed systems are autonomous, conservative and have nine equilibrium points. For the perturbed systems, which do not depend on the parameter explicitly, we obtain the conditions yielding that the initial system has a certain number of two-dimensional invariant surfaces homeomorphic to a torus for each sufficiently small values of parameter and the formulas of such surfaces. A class of systems with seven invariant surfaces enclosing different configurations of equilibrium points is studied as an example of applications of our method.

Download