Computer-assisted multimodal training is an effective way of learning complex motor skills in various applications. In particular disciplines (eg. healthcare) incompetency in performing dexterous hands-on examinations (clinical palpation) may result in misdiagnosis of symptoms, serious injuries or even death. Furthermore, a high quality clinical examination can help to exclude significant pathology, and reduce time and cost of diagnosis by eliminating the need for unnecessary medical imaging. Medical palpation is used regularly as an effective preliminary diagnosis method all around the world but years of training are required currently to achieve competency. This paper focuses on a multimodal palpation training system to teach and improve clinical examination skills in relation to the abdomen. It is our aim to shorten significantly the palpation training duration by increasing the frequency of rehearsals as well as providing essential augmented feedback on how to perform various abdominal palpation techniques which has been captured and modelled from medical experts. Twenty three first year medical students divided into a control group (n=8), a semi-visually trained group (n=8), and a fully visually trained group (n=7) were invited to perform three palpation tasks (superficial, deep and liver). The medical students performances were assessed using both computer-based and human-based methods where a positive correlation was shown between the generated scores, r=.62, p(one-tailed)<.05. The visually-trained group significantly outperformed the control group in which abstract visualisation of applied forces and their palmar locations were provided to the students during each palpation examination (p<.05). Moreover, a positive trend was observed between groups when visual feedback was presented, J=132, z=2.62, r=0.55.