Do you want to publish a course? Click here

A Nonlinear Enhanced Microresonator Gyroscope

54   0   0.0 ( 0 )
 Added by Jonathan Silver
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a novel optical microresonator gyroscope whose responsivity to rotation is enhanced by a factor of around $10^4$ by operating close to the critical point of a spontaneous symmetry breaking transition between counterpropagating light. We present a proof-of-principle rotation measurement using a resonator with a diameter of 3 mm. In addition, we characterise the dynamical response of the system to a sinusoidally varying rotation, and show this to be well described by a simple theoretical model. We observe the universal critical behaviors of responsivity enhancement and critical slowing down, both of which are beneficial in an optical gyroscope.



rate research

Read More

Whispering gallery mode (WGM) microresonators, benefitting from the ultrahigh quality (Q) factors and small mode volumes, could considerably enhance the light-matter interaction, making it an ideal platform for studying a broad range of nonlinear optical effects. In this review, the progress of optical nonlinear effects in WGM microresonators is comprehensively summarized. First, several basic nonlinear effects in WGM microresonator are reviewed, including not only Pockels effect and Kerr effect, but also harmonic generations, four-wave mixing and stimulated optical scattering effects. Apart from that, nonlinearity induced by thermal effect and in PT-symmetric systems are also discussed. Furthermore, multistep nonlinear optical effects by cascading several nonlinear effects are reviewed, including frequency comb generations. Several selected applications of optical nonlinearity in WGM resonators are finally introduced, such as narrow-linewidth microlasers, nonlinearity induced non-reciprocity and frequency combs.
Fiber optic gyroscopes (FOG) based on the Sagnac effect are a valuable tool in sensing and navigation and enable accurate measurements in applications ranging from spacecraft and aircraft to self-driving vehicles such as autonomous cars. As with any classical optical sensors, the ultimate performance of these devices is bounded by the standard quantum limit (SQL). Quantum-enhanced interferometry allows us to overcome this limit using non-classical states of light. Here, we report on an entangled-photon gyroscope that uses path-entangled NOON-states (N=2) to provide phase supersensitivity beyond the standard-quantum-limit.
Guided-mode coupling in a microresonator generally manifests itself through avoided crossings of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion by creating two branches that have dispersions of opposite sign in spectral regions that would otherwise be characterized by either positive (normal) or negative (anomalous) dispersion. In this paper, we study, both analytically and computationally, the general properties of nonlinear frequency comb generation at an avoided crossing using the coupled Lugiato-Lefever equation. In particular, we find that bright solitons and broadband frequency combs can be excited when both branches are pumped for a suitable choice of the pump powers and the detuning parameters. A deterministic path for soliton generation is found.
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.
We study the configuration of efficient nonlinear Cerenkov diffraction generated from a one-dimensional nonlinear photonic crystal surface, which underlies the incorporation of both quasi-phase-matching and total internal reflection by the crystal surface. Multidirectional radiation spots with different Cerenkov angles are demonstrated experimentally, which results from different orders of reciprocal vectors. At specific angles, the incident light and total internal reflect light associating with quasi-phase-matching format completely phase-matching scheme, leading to great enhancement of harmonic efficiency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا