Do you want to publish a course? Click here

A note on unimodular $N=1, d=4$ AdS supergravity

118   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime with radius given by the equation of motion of the auxiliary scalar field, ie, $S=frac{3}{kappa L}$. However, we see that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de Sitter spacetimes as well as anti-de Sitter spacetime with radius $l eq L$.



rate research

Read More

We formulate a unimodular N=1, d=4 supergravity theory off shell. We see that the infinitesimal Grassmann parameters defining the unimodular supergravity transformations are constrained and show that the conmutator of two infinitesinal unimodular supergravity transformations closes on transverse diffeomorphisms, Lorentz transformations and unimodular supergravity transformations. Along the way, we also show that the linearized theory is a supersymmetric theory of gravitons and gravitinos. We see that de Sitter and anti-de Sitter spacetimes are non-supersymmetric vacua of our unimodular supergravity theory.
The superspace formulation of N=1 conformal supergravity in four dimensions is demonstrated to be equivalent to the conventional component field approach based on the superconformal tensor calculus. The detailed correspondence between two approaches is explicitly given for various quantities; superconformal gauge fields, curvatures and curvature constraints, general conformal multiplets and their transformation laws, and so on. In particular, we carefully analyze the curvature constraints leading to the superconformal algebra and also the superconformal gauge fixing leading to Poincare supergravity since they look rather different between two approaches.
109 - D. Farotti , J. Gutowski 2021
Extreme near-horizon geometries in D=11 supergravity preserving four supersymmetries are classified. It is shown that the Killing spinors fall into three possible orbits, corresponding to pairs of spinors defined on the spatial cross-sections of the horizon which have isotropy groups SU(3), G2, or SU(4). In each case, the conditions on the geometry and the 4-form flux are determined. The integrability conditions obtained from the Killing spinor equations are also investigated.
120 - Tomas Ortin 2008
We find the most general supersymmetric solutions of ungauged N=1,d=4 supergravity coupled to an arbitrary number of vector and chiral supermultiplets, which turn out to be essentially pp-waves and strings. We also introduce magnetic 1-forms and their supersymmetry transformations and 2-forms associated to the isometries of the scalar manifold and their supersymmetry transformations. Only the latter can couple to BPS objects (strings), in agreement with our results.
We derive a $2+1$ dimensional model with unconventional supersymmetry at the boundary of an ${rm AdS}_4$ $mathcal{N}$-extended supergravity, generalizing previous results. The (unconventional) extended supersymmetry of the boundary model is instrumental in describing, within a top-down approach, the electronic properties of graphene-like 2D materials at the two Dirac points, ${bf K}$ and ${bf K}$. The two valleys correspond to the two independent sectors of the ${rm OSp}(p|2)times {rm OSp}(q|2)$ boundary model in the $p=q$ case, which are related by a parity transformation. The Semenoff and Haldane-type masses entering the corresponding Dirac equations are identified with the torsion parameters of the substrate in the model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا