Do you want to publish a course? Click here

Correlation decay for hard spheres via Markov chains

274   0   0.0 ( 0 )
 Added by Will Perkins
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We improve upon all known lower bounds on the critical fugacity and critical density of the hard sphere model in dimensions two and higher. As the dimension tends to infinity our improvements are by factors of $2$ and $1.7$, respectively. We make these improvements by utilizing techniques from theoretical computer science to show that a certain Markov chain for sampling from the hard sphere model mixes rapidly at low enough fugacities. We then prove an equivalence between optimal spatial and temporal mixing for hard spheres to deduce our results.



rate research

Read More

We consider a continuous time Markov chain on a countable state space. We prove a joint large deviation principle (LDP) of the empirical measure and current in the limit of large time interval. The proof is based on results on the joint large deviations of the empirical measure and flow obtained in cite{BFG}. By improving such results we also show, under additional assumptions, that the LDP holds with the strong L^1 topology on the space of currents. We deduce a general version of the Gallavotti-Cohen (GC) symmetry for the current field and show that it implies the so-called fluctuation theorem for the GC functional. We also analyze the large deviation properties of generalized empirical currents associated to a fundamental basis in the cycle space, which, as we show, are given by the first class homological coefficients in the graph underlying the Markov chain. Finally, we discuss in detail some examples.
We recover the Donsker-Varadhan large deviations principle (LDP) for the empirical measure of a continuous time Markov chain on a countable (finite or infinite) state space from the joint LDP for the empirical measure and the empirical flow proved in [2].
In this paper, we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a normal transition kernel, such as the one of birth-death chains or reversible Markov chains. We start by identifying a set of sufficient conditions for a Markov chain to belong to the similarity orbit of a birth-death one. As by-products, we obtain a spectral representation in terms of non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis on the convergence rate, separation cutoff and ${rm{L}}^2$-cutoff of this class of non-reversible Markov chains. We also look into the problem of estimating the integral functionals from discrete observations for this class. In the last part of this paper, we investigate a particular similarity orbit of reversible Markov kernels, that we call the pure birth orbit, and analyze various possibly non-reversible variants of classical birth-death processes in this orbit.
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete finite Markov chain, for which two copies started in different states can be coupled to meet almost surely in finite time, yet their distributions keep a total variation distance bounded away from 0, even in the limit as time goes off to infinity. We show that the supremum of total variation distance kept in this context is $frac12$.
257 - C. Landim 2018
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا