Do you want to publish a course? Click here

[CI](1-0) and [CI](2-1) in resolved local galaxies

110   0   0.0 ( 0 )
 Added by Alison Crocker
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present resolved [CI] line intensities of 18 nearby galaxies observed with the SPIRE FTS spectrometer on the Herschel Space Observatory. We use these data along with resolved CO line intensities from $J_mathrm{up} = 1$ to 7 to interpret what phase of the interstellar medium the [CI] lines trace within typical local galaxies. A tight, linear relation is found between the intensities of the CO(4-3) and [CI](2-1) lines; we hypothesize this is due to the similar upper level temperature of these two lines. We modeled the [CI] and CO line emission using large velocity gradient models combined with an empirical template. According to this modeling, the [CI](1-0) line is clearly dominated by the low-excitation component. We determine [CI] to molecular mass conversion factors for both the [CI](1-0) and [CI](2-1) lines, with mean values of $alpha_{mathrm{[CI](1-0)}} = 7.3$ M$_{mathrm{sun}}$ K$^{-1}$ km$^{-1}$ s pc$^{-2}$ and $alpha_{mathrm{[CI](2-1)}} = 34 $ M$_{mathrm{sun}}$ K$^{-1}$ km$^{-1}$ s pc$^{-2}$ with logarithmic root-mean-square spreads of 0.20 and 0.32 dex, respectively. The similar spread of $alpha_{mathrm{[CI](1-0)}}$ to $alpha_{mathrm{CO}}$ (derived using the CO(2-1) line) suggests that [CI](1-0) may be just as good a tracer of cold molecular gas as CO(2-1) in galaxies of this type. On the other hand, the wider spread of $alpha_{mathrm{[CI](2-1)}}$ and the tight relation found between [CI](2-1) and CO(4-3) suggest that much of the [CI](2-1) emission may originate in warmer molecular gas.



rate research

Read More

Measuring molecular gas mass is vital for understanding the evolution of galaxies at high redshifts (z$geq$1). Most measurements rely on CO as a tracer, but dependences on metallicity, dynamics and surface density lead to systematic uncertainties in high-z galaxies, where these physical properties are difficult to observe, and where the physical environments can differ systematically from those at z=0. Dust continuum emission provides a potential alternative assuming a known dust/gas ratio, but this must be calibrated on a direct gas tracer at z$geq$1. In this paper we consider the [CI] 492-GHz emission line, which has been shown to trace molecular gas closely throughout Galactic clouds and has the advantages of being optically thin in typical conditions (unlike CO), and being observable at accessible frequencies at high redshifts (in contrast to the low-excitation lines of CO). We use the Atacama Large Millimetre/submillimetre Array (ALMA) to measure [CI], CO(4-3) and dust emission in a representative sample of star-forming galaxies at z=1, and combine these data with multi-wavelength spectral energy distributions to study relationships between dust and gas components of galaxies. We uncover a strong [CI]-dust correlation, suggesting that both trace similar phases of the gas. By incorporating other samples from the literature, we show that this correlation persists over a wide range of luminosities and redshifts up to z$sim$4. Finally we explore the implications of our results as an independent test of literature calibrations for dust as a tracer of gas mass, and for predicting the CI abundance.
Sensitive new observations of the fine structure line $^3$P$_2$$to $ $^3$P$_1$ (J=2--1) of the neutral atomic carbon CI ($ u_{rest}sim 809$ GHz) in the strongly lensed Ultra Luminous Infrared Galaxy (ULIRG) IRAS F10214+4724 at z=2.3 with the mm/sub-mm telescope James Clerk Maxwel (JCMT) are presented. These do not confirm the presence of emission from this line at the flux levels or angular extent previously reported in the literature. The new 2$sigma $ upper limits are: $rm S_{CI}la 7 Jy km s^{-1}$ (central position), and $rm < S_{CI} > la 8.5 Jy km s^{-1}$ (average over the two $rm [delta (RA), delta (Dec)]=[0,pm 10]$ positions). A CI emission assumed fully concomitant with the bulk of H$_2$ and confined entirely within the strongly lensed object yields an upper limit of $rm M_{CI}(H_2)la 1.5 times 10^{10} M_{odot}$, compatible with the reported CO-derived H$_2$ gas mass, within the uncertainties of the two methods. A comparison with the recent detection of the $^3$P$_1$$to $ $^3$P$_0$ (J=1--0) line in this galaxy by Weiss et al. (2004) is made and the large discrepancy with the previous CI measurements is briefly discussed.
Studying molecular gas in the central regions of the star burst galaxies NGC4945 and Circinus enables us to characterize the physical conditions and compare them to previous local and high-z studies. We estimate temperature, molecular density and column densities of CO and atomic carbon. Using model predictions we give a range of estimated CO/C abundance ratios. Using the new NANTEN2 4m sub-millimeter telescope in Pampa La Bola, Chile, we observed for the first time CO 4-3 and [CI] 3P1-3 P0 at the centers of both galaxies at linear scale of 682 pc and 732 pc respectively. We compute the cooling curves of 12CO and 13CO using radiative transfer models and estimate the physical conditions of CO and [CI]. The centers of NGC4945 and Circinus are very [CI] bright objects, exhibiting [CI] 3P1 - 3 P0 luminosities of 91 and 67Kkms-1kpc2, respectively. The [CI] 3P1-3 P0/CO 4-3 ratio of integrated intensities are large at 1.2 in NGC4945 and 2.8 in Circinus. Combining previous CO J= 1-0, 2-1 and 3-2 and 13CO J= 1-0, 2-1 studies with our new observations, the radiative transfer calculations give a range of densities, n(H2) = 10^3-3*104^cm-3, and a wide range of kinetic temperatures, Tkin = 20 - 100K, depending on the density. Future CO J= 7-6 and [CI] 2-1 observations will be important to resolve the ambiguity in the physical conditions and confirm the model predictions.
High-redshift dusty star-forming galaxies with very high star formation rates (500 -- 3000 M$_odot$ yr$^{-1}$) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these systems can reveal the driving factor behind the high star formation. Using molecular gas tracers like high-J CO lines, neutral carbon lines and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar medium. In this paper, we present high resolution($sim$0.4) observations of CO(7-6), [CI](2-1) and dust continuum of 3 lensed galaxies from the SPT-SMG sample at z$sim$3 with the Atacama Large Millimeter/submillimeter Array. Our sources have high intrinsic star-formation rates (>850 M$_odot$ yr$^{-1}$) and rather short depletion timescales (<100 Myr). Based on the $rm L_{[rm CI](2-1)}/ rm L_{rm CO(7-6)}$ and $rm L_{[rm CI](2-1)}/rm L_{rm IR}$ ratios, our sample galaxies exhibit higher radiation field intensity compared to other submillimetre galaxies but have similar gas densities. We perform visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H$_2$ conversion factor $alpha_{rm CO}$ but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103-45 and SPT2147-50 are likely rotating disks while SPT2357-51 is a probable major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high-z dusty star-forming galaxies.
We present a supermassive black hole (SMBH) mass measurement in the Seyfert 1 galaxy NGC7469 using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the atomic-${rm [CI]}$(1-0) and molecular-$^{12}$CO(1-0) emission lines at the spatial resolution of $approx0.3$ (or $approx$ 100 pc). These emissions reveal that NGC7469 hosts a circumnuclear gas disc (CND) with a ring-like structure and a two-arm/bi-symmetric spiral pattern within it, surrounded by a starbursting ring. The CND has a relatively low $sigma/Vapprox0.35$ ($rsim0.5$) and $sim0.19$ ($r>0.5$), suggesting that the gas is dynamically settled and suitable for dynamically deriving the mass of its central source. As is expected from X-ray dominated region (XDR) effects that dramatically increase an atomic carbon abundance by dissociating CO molecules, we suggest that the atomic [CI](1-0) emission is a better probe of SMBH masses than CO emission in AGNs. Our dynamical model using the ${rm [CI]}$(1-0) kinematics yields a $M_{rm BH}=1.78^{+2.69}_{-1.10}times10^7$M$_odot$ and $M/L_{rm F547M}=2.25^{+0.40}_{-0.43}$ (M$_odot$/L$_odot$). The model using the CO(1-0) kinematics also gives a consistent $M_{rm BH}$ with a larger uncertainty, up to an order of magnitude, i.e. $M_{rm BH}=1.60^{+11.52}_{-1.45}times10^7$M$_odot$. This newly dynamical $M_{rm BH}$ is $approx$ 2 times higher than the mass determined from the reverberation mapped (RM) method using emissions arising in the unresolved broad-line region (BLR). Given this new $M_{rm BH}$, we are able to constrain the specific RM dimensionless scaling factor of $f=7.2^{+4.2}_{-3.4}$ for the AGN BLR in NGC7469. The gas within the unresolved BLR thus has a Keplerian virial velocity component and the inclination of $iapprox11.0^circ$$_{-2.5}^{+2.2}$, confirming its face-on orientation in a Seyfert 1 AGN by assuming a geometrically thin BLR model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا