No Arabic abstract
We give a 1.488-approximation for the classic scheduling problem of minimizing total weighted completion time on unrelated machines. This is a considerable improvement on the recent breakthrough of $(1.5 - 10^{-7})$-approximation (STOC 2016, Bansal-Srinivasan-Svensson) and the follow-up result of $(1.5 - 1/6000)$-approximation (FOCS 2017, Li). Bansal et al. introduced a novel rounding scheme yielding strong negative correlations for the first time and applied it to the scheduling problem to obtain their breakthrough, which resolved the open problem if one can beat out the long-standing $1.5$-approximation barrier based on independent rounding. Our key technical contribution is in achieving significantly stronger negative correlations via iterative fair contention resolution, which is of independent interest. Previously, Bansal et al. obtained strong negative correlations via a variant of pipage type rounding and Li used it as a black box.
Matching is one of the most fundamental and broadly applicable problems across many domains. In these diverse real-world applications, there is often a degree of uncertainty in the input which has led to the study of stochastic matching models. Here, each edge in the graph has a known, independent probability of existing derived from some prediction. Algorithms must probe edges to determine existence and match them irrevocably if they exist. Further, each vertex may have a patience constraint denoting how many of its neighboring edges can be probed. We present new ordered contention resolution schemes yielding improved approximation guarantees for some of the foundational problems studied in this area. For stochastic matching with patience constraints in general graphs, we provide a 0.382-approximate algorithm, significantly improving over the previous best 0.31-approximation of Baveja et al. (2018). When the vertices do not have patience constraints, we describe a 0.432-approximate random order probing algorithm with several corollaries such as an improved guarantee for the Prophet Secretary problem under Edge Arrivals. Finally, for the special case of bipartite graphs with unit patience constraints on one of the partitions, we show a 0.632-approximate algorithm that improves on the recent $1/3$-guarantee of Hikima et al. (2021).
In this paper the problem of scheduling of jobs on parallel machines under incompatibility relation is considered. In this model a binary relation between jobs is given and no two jobs that are in the relation can be scheduled on the same machine. In particular, we consider job scheduling under incompatibility relation forming bipartite graphs, under makespan optimality criterion, on uniform and unrelated machines. We show that no algorithm can achieve a good approximation ratio for uniform machines, even for a case of unit time jobs, under $P eq NP$. We also provide an approximation algorithm that achieves the best possible approximation ratio, even for the case of jobs of arbitrary lengths $p_j$, under the same assumption. Precisely, we present an $O(n^{1/2-epsilon})$ inapproximability bound, for any $epsilon > 0$; and $sqrt{p_{sum}}$-approximation algorithm, respectively. To enrich the analysis, bipartite graphs generated randomly according to Gilberts model $mathcal{G}_{n,n,p(n)}$ are considered. For a broad class of $p(n)$ functions we show that there exists an algorithm producing a schedule with makespan almost surely at most twice the optimum. Due to our knowledge, this is the first study of randomly generated graphs in the context of scheduling in the considered model. For unrelated machines, an FPTAS for $R2|G = bipartite|C_{max}$ is provided. We also show that there is no algorithm of approximation ratio $O(n^bp_{max}^{1-epsilon})$, even for $Rm|G = bipartite|C_{max}$ for $m ge 3$ and any $epsilon > 0$, $b > 0$, unless $P = NP$.
This paper focuses on the contention resolution problem on a shared communication channel that does not support collision detection. A shared communication channel is a multiple access channel, which consists of a sequence of synchronized time slots. Players on the channel may attempt to broadcast a packet (message) in any time slot. A players broadcast succeeds if no other player broadcasts during that slot. If two or more players broadcast in the same time slot, then the broadcasts collide and both broadcasts fail. The lack of collision detection means that a player monitoring the channel cannot differentiate between the case of two or more players broadcasting in the same slot (a collision) and zero players broadcasting. In the contention-resolution problem, players arrive on the channel over time, and each player has one packet to transmit. The goal is to coordinate the players so that each player is able to successfully transmit its packet within reasonable time. However, the players can only communicate via the shared channel by choosing to either broadcast or not. A contention-resolution protocol is measured in terms of its throughput (channel utilization). Previous work on contention resolution that achieved constant throughput assumed that either players could detect collisions, or the players arrival pattern is generated by a memoryless (non-adversarial) process. The foundational question answered by this paper is whether collision detection is a luxury or necessity when the objective is to achieve constant throughput. We show that even without collision detection, one can solve contention resolution, achieving constant throughput, with high probability.
New optical technologies offer the ability to reconfigure network topologies dynamically, rather than setting them once and for all. This is true in both optical wide area networks (optical WANs) and in datacenters, despite the many differences between these two settings. Because of these new technologies, there has been a surge of both practical and theoretical research on algorithms to take advantage of them. In particular, Jia et al. [INFOCOM 17] designed online scheduling algorithms for dynamically reconfigurable topologies for both the makespan and sum of completion times objectives. In this paper, we work in the same setting but study an objective that is more meaningful in an online setting: the sum of flow times. The flow time of a job is the total amount of time that it spends in the system, which may be considerably smaller than its completion time if it is released late. We provide competitive algorithms for the online setting with speed augmentation, and also give a lower bound proving that speed augmentation is in fact necessary. As a side effect of our techniques, we also improve and generalize the results of Jia et al. on completion times by giving an $O(1)$-competitive algorithm for arbitrary sizes and release times even when nodes have different degree bounds, and moreover allow for the weighted sum of completion times (or flow times).
In this paper we study the classical scheduling problem of minimizing the total weighted completion time on a single machine with the constraint that one specific job must be scheduled at a specified position. We give dynamic programs with pseudo-polynomial running time, and a fully polynomial-time approximation scheme (FPTAS).