No Arabic abstract
We propose a method for simulating an Unruh-DeWitt detector, coupled to a 1+1-dimensional massless scalar field, with a suitably-engineered $chi^{(2)}$ nonlinear interaction. In this simulation, the parameter playing the role of the detector acceleration is played by the relative inverse-group-velocity gradient inside the nonlinear material. We identify experimental parameters that tune the detector energy gap, acceleration, and switching function. This system can simulate time-dependent acceleration, time-dependent detector energy gaps, and non-vacuum initial detector-field states. Furthermore, for very short materials, the system can simulate the weak anti-Unruh effect, in which the response of the detector decreases with acceleration. While some Unruh-related phenomena have been investigated in nonlinear optics, this is the first proposal for simulating an Unruh-DeWitt detector in these systems.
We study, in the framework of open quantum systems, the entanglement dynamics for a quantum system composed of two uniformly accelerated Unruh-Dewitt detectors interacting with a bath of massive scalar fields in the Minkowski vacuum. We find that the entanglement evolution for the quantum system coupled with massive fields is always slower compared with that of the one coupled with massless fields, and this time-delay effect brought by the field being massive can however be counteracted by a large enough acceleration, in contrast to the case of a static quantum system in a thermal bath, where this time delay is not affected by the temperature. Remarkably, the maximal concurrence of the quantum system generated during evolution may increase with acceleration for any inter-detector separation while that for static ones in a thermal bath decreases monotonically with temperature, and this can be considered as an anti-Unruh effect in terms of the entanglement generated.
Ultra-short pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum regime, however, faithful numerical simulations of pulse dynamics naively require a representation of the state in an exponentially large Hilbert space. Here, we employ a time-domain, matrix product state (MPS) representation to enable efficient simulations by exploiting the entanglement structure of the system. In order to extract physical insight from these simulations, we develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes, enabling, e.g., access to the phase-space portraits of arbitrary pulse waveforms. As a demonstration, we perform exact numerical simulations of a Kerr soliton in the quantum regime. We observe the development of non-classical Wigner-function negativity in the solitonic mode as well as quantum corrections to the semiclassical dynamics of the pulse. A similar analysis of $chi^{(2)}$ simultons reveals a unique entanglement structure between the fundamental and second harmonic. Our approach is also readily compatible with quantum trajectory theory, allowing full quantum treatment of propagation loss and decoherence. We expect this work to establish the MPS technique as part of a unified engineering framework for the emerging field of broadband quantum photonics.
We derive the response function for a comoving, pointlike Unruh-DeWitt particle detector coupled to a complex scalar field $phi$, in the $(3+1)$-dimensional cosmological de Sitter spacetime. The field-detector coupling is taken to be proportional to $phi^{dagger} phi$. We address both conformally invariant and massless minimally coupled scalar field theories, respectively in the conformal and the Bunch-Davies vacuum. The response function integral for the massless minimal complex scalar, not surprisingly, shows divergences and accordingly we use suitable regularisation scheme to find out well behaved results. The regularised result also contains a de Sitter symmetry breaking logarithm, growing with the cosmological time. Possibility of extension of these results with the so called de Sitter $alpha$-vacua is discussed. While we find no apparent problem in computing the response function for a real scalar in these vacua, a complex scalar field is shown to contain some possible ambiguities in the detector response. The case of the minimal and nearly massless scalar field theory is also briefly discussed.
One of the main challenges in physics today is to merge quantum theory and the theory of general relativity into a unified framework. Various approaches towards developing such a theory of quantum gravity are pursued, but the lack of experimental evidence of quantum gravitational effects thus far is a major hindrance. Yet, the quantization of space-time itself can have experimental implications: the existence of a minimal length scale is widely expected to result in a modification of the Heisenberg uncertainty relation. Here we introduce a scheme that allows an experimental test of this conjecture by probing directly the canonical commutation relation of the center of mass mode of a massive mechanical oscillator with a mass close to the Planck mass. Our protocol utilizes quantum optical control and readout of the mechanical system to probe possible deviations from the quantum commutation relation even at the Planck scale. We show that the scheme is within reach of current technology. It thus opens a feasible route for tabletop experiments to test possible quantum gravitational phenomena.
We address the validity of the single-mode approximation that is commonly invoked in the analysis of entanglement in non-inertial frames and in other relativistic quantum information scenarios. We show that the single-mode approximation is not valid for arbitrary states, finding corrections to previous studies beyond such approximation in the bosonic and fermionic cases. We also exhibit a class of wave packets for which the single-mode approximation is justified subject to the peaking constraints set by an appropriate Fourier transform.