Physical Layer Security for NOMA Transmission in mmWave Drone Networks


Abstract in English

The non-orthogonal multiple access (NOMA) and millimeter-wave (mmWave) transmission enable the unmanned aerial vehicle (UAV) assisted wireless networks to provide broadband connectivity over densely packed urban areas. The presence of malicious receivers, however, compromise the security of the UAV-to-ground communications link, thereby degrading secrecy rates. In this work, we consider a NOMA-based transmission strategy in a mmWave UAV-assisted wireless network, and investigate the respective secrecy-rate performance rigorously. In particular, we propose a protected-zone approach to enhance the secrecy-rate performance by preventing the most vulnerable subregion (outside the user region) from the presence of malicious receivers. The respective secrecy rates are then derived analytically as a function of the protected zone, which verifies great secrecy rate improvements through optimizing shape of the protected zone in use. Furthermore, we show that the optimal protected zone shape for mmWave links appears as a compromise between protecting the angle versus distance dimension, which would otherwise form to protect solely the distance dimension for sub-6GHz links. We also numerically evaluate the impact of transmission power, protected-zone size, and UAV altitude on the secrecy-rate performance improvements as practical considerations.

Download