Do you want to publish a course? Click here

Smooth markets: A basic mechanism for organizing gradient-based learners

54   0   0.0 ( 0 )
 Added by David Balduzzi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the success of modern machine learning, it is becoming increasingly important to understand and control how learning algorithms interact. Unfortunately, negative results from game theory show there is little hope of understanding or controlling general n-player games. We therefore introduce smooth markets (SM-games), a class of n-player games with pairwise zero sum interactions. SM-games codify a common design pattern in machine learning that includes (some) GANs, adversarial training, and other recent algorithms. We show that SM-games are amenable to analysis and optimization using first-order methods.



rate research

Read More

The success of minimax learning problems of generative adversarial networks (GANs) has been observed to depend on the minimax optimization algorithm used for their training. This dependence is commonly attributed to the convergence speed and robustness properties of the underlying optimization algorithm. In this paper, we show that the optimization algorithm also plays a key role in the generalization performance of the trained minimax model. To this end, we analyze the generalization properties of standard gradient descent ascent (GDA) and proximal point method (PPM) algorithms through the lens of algorithmic stability under both convex concave and non-convex non-concave minimax settings. While the GDA algorithm is not guaranteed to have a vanishing excess risk in convex concave problems, we show the PPM algorithm enjoys a bounded excess risk in the same setup. For non-convex non-concave problems, we compare the generalization performance of stochastic GDA and GDmax algorithms where the latter fully solves the maximization subproblem at every iteration. Our generalization analysis suggests the superiority of GDA provided that the minimization and maximization subproblems are solved simultaneously with similar learning rates. We discuss several numerical results indicating the role of optimization algorithms in the generalization of the learned minimax models.
91 - Wenjie Chen , Shengcai Liu , 2021
Black-box problems are common in real life like structural design, drug experiments, and machine learning. When optimizing black-box systems, decision-makers always consider multiple performances and give the final decision by comprehensive evaluations. Motivated by such practical needs, we focus on constrained black-box problems where the objective and constraints lack known special structure, and evaluations are expensive and even with noise. We develop a novel constrained Bayesian optimization approach based on the knowledge gradient method ($c-rm{KG}$). A new acquisition function is proposed to determine the next batch of samples considering optimality and feasibility. An unbiased estimator of the gradient of the new acquisition function is derived to implement the $c-rm{KG}$ approach.
We study the problem of meta-learning through the lens of online convex optimization, developing a meta-algorithm bridging the gap between popular gradient-based meta-learning and classical regularization-based multi-task transfer methods. Our method is the first to simultaneously satisfy good sample efficiency guarantees in the convex setting, with generalization bounds that improve with task-similarity, while also being computationally scalable to modern deep learning architectures and the many-task setting. Despite its simplicity, the algorithm matches, up to a constant factor, a lower bound on the performance of any such parameter-transfer method under natural task similarity assumptions. We use experiments in both convex and deep learning settings to verify and demonstrate the applicability of our theory.
Effective techniques for eliciting user preferences have taken on added importance as recommender systems (RSs) become increasingly interactive and conversational. A common and conceptually appealing Bayesian criterion for selecting queries is expected value of information (EVOI). Unfortunately, it is computationally prohibitive to construct queries with maximum EVOI in RSs with large item spaces. We tackle this issue by introducing a continuous formulation of EVOI as a differentiable network that can be optimized using gradient methods available in modern machine learning (ML) computational frameworks (e.g., TensorFlow, PyTorch). We exploit this to develop a novel, scalable Monte Carlo method for EVOI optimization, which is more scalable for large item spaces than methods requiring explicit enumeration of items. While we emphasize the use of this approach for pairwise (or k-wise) comparisons of items, we also demonstrate how our method can be adapted to queries involving subsets of item attributes or partial items, which are often more cognitively manageable for users. Experiments show that our gradient-based EVOI technique achieves state-of-the-art performance across several domains while scaling to large item spaces.
This paper presents a recursive reasoning formalism of Bayesian optimization (BO) to model the reasoning process in the interactions between boundedly rational, self-interested agents with unknown, complex, and costly-to-evaluate payoff functions in repeated games, which we call Recursive Reasoning-Based BO (R2-B2). Our R2-B2 algorithm is general in that it does not constrain the relationship among the payoff functions of different agents and can thus be applied to various types of games such as constant-sum, general-sum, and common-payoff games. We prove that by reasoning at level 2 or more and at one level higher than the other agents, our R2-B2 agent can achieve faster asymptotic convergence to no regret than that without utilizing recursive reasoning. We also propose a computationally cheaper variant of R2-B2 called R2-B2-Lite at the expense of a weaker convergence guarantee. The performance and generality of our R2-B2 algorithm are empirically demonstrated using synthetic games, adversarial machine learning, and multi-agent reinforcement learning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا