The concept of extended Hamiltonian systems allows the geometrical interpretation of several integrable and superintegrable systems with polynomial first integrals of degree depending on a rational parameter. Until now, the procedure of extension has been applied only in the case of natural Hamiltonians. In this article, we give several examples of application to non-natural Hamiltonians, such as the two point-vortices, the Lotka-Volterra and some quartic in the momenta Hamiltonians, obtaining effectively extended Hamiltonians in some cases and failing in others. We briefly discuss the reasons of these results.