Layer-Resolved Magnetic Proximity Effect in van der Waals Heterostructures


Abstract in English

Magnetic proximity effects are crucial ingredients for engineering spintronic, superconducting, and topological phenomena in heterostructures. Such effects are highly sensitive to the interfacial electronic properties, such as electron wave function overlap and band alignment. The recent emergence of van der Waals (vdW) magnets enables the possibility of tuning proximity effects via designing heterostructures with atomically clean interfaces. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, where adjacent ferromagnetic monolayers are antiferromagnetically coupled. Exploiting this magnetic structure, we uncovered a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we found that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. These properties enabled us to use monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains near the spin-flip transition in bilayer CrI3. Our work reveals a new way to control proximity effects and probe interfacial magnetic order via vdW engineering.

Download