Do you want to publish a course? Click here

Engineered Defects to Modulate Fracture Strength of Single Layer MoS2: An Atomistic Study

331   0   0.0 ( 0 )
 Added by Tanmay Sarkar Akash
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use classical molecular dynamics (MD) simulations to investigate the mechanical properties of pre-cracked, nano-porous single layer MoS2 (SLMoS2) and the effect of interactions between cracks and pores. We found that the failure of pre-cracked and nano-porous SLMoS2 is dominated by brittle type fracture. Bonds in armchair direction show a stronger resistance to crack propagation compared to the zigzag direction. We compared the brittle failure of Griffith prediction with the MD fracture strength and toughness and found substantial differences that limit the applicability of Griffith criterion for SLMoS2 in case of nano-cracks and pores. Next, we demonstrate that the mechanical properties of pre-cracked SLMoS2 can be enhanced via symmetrically placed pores and auxiliary cracks around a central crack and position of such arrangements can be optimized for maximum enhancement of strengths. Such a study would help towards strain engineering based advanced designing of SLMoS2 and other similar Transition Metal Dichalcogenides.



rate research

Read More

303 - F. Rosch , 2007
Molecular dynamics simulations of crack propagation are performed for two extreme cases of complex metallic alloys (CMAs): In a model quasicrystal the structure is determined by clusters of atoms, whereas the model C15 Laves phase is a simple periodic stacking of a unit cell. The simulations reveal that the basic building units of the structures also govern their fracture behaviour. Atoms in the Laves phase play a comparable role to the clusters in the quasicrystal. Although the latter are not rigid units, they have to be regarded as significant physical entities.
242 - S P Beckman , L F Wan 2012
The orthorhombic boride crystal family XYB$_{14}$, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB$_{14}$ crystal. First-principles, textit{ab initio}, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Youngs modulus are calculated. From these results the lower bound fracture strength of AlLiB$_{14}$ is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB$_{14}$ is limited by the interatomic B--B bonds that span between the B layers.
We present a photoluminescence study of freestanding and Si/SiO2 supported single- and few-layer MoS2. The single-layer exciton peak (A) is only observed in freestanding MoS2. The photoluminescence of supported single-layer MoS2 is instead originating from the A- (trion) peak as the MoS2 is n-type doped from the substrate. In bilayer MoS2, the van der Waals interaction with the substrate is decreasing the indirect band gap energy by up to ~ 80 meV. Furthermore, the photoluminescence spectra of suspended MoS2 can be influenced by interference effects.
We present a stochastic modeling framework for atomistic propagation of a Mode I surface crack, with atoms interacting according to the Lennard-Jones interatomic potential at zero temperature. Specifically, we invoke the Cauchy-Born rule and the maximum entropy principle to infer probability distributions for the parameters of the interatomic potential. We then study how uncertainties in the parameters propagate to the quantities of interest relevant to crack propagation, namely, the critical stress intensity factor and the lattice trapping range. For our numerical investigation, we rely on an automated version of the so-called numerical-continuation enhanced flexible boundary (NCFlex) algorithm.
The electron-phonon coupling strength in the spin-split valence band maximum of single-layer MoS$_2$ is studied using angle-resolved photoemission spectroscopy and density functional theory-based calculations. Values of the electron-phonon coupling parameter $lambda$ are obtained by measuring the linewidth of the spin-split bands as a function of temperature and fitting the data points using a Debye model. The experimental values of $lambda$ for the upper and lower spin-split bands at K are found to be 0.05 and 0.32, respectively, in excellent agreement with the calculated values for a free-standing single-layer MoS$_2$. The results are discussed in the context of spin and phase-space restricted scattering channels, as reported earlier for single-layer WS$_2$ on Au(111). The fact that the absolute valence band maximum in single-layer MoS$_2$ at K is almost degenerate with the local valence band maximum at $Gamma$ can potentially be used to tune the strength of the electron-phonon interaction in this material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا