Protective measurement of open quantum systems


Abstract in English

We study protective quantum measurements in the presence of an environment and decoherence. We consider the model of a protectively measured qubit that also interacts with a spin environment during the measurement. We investigate how the coupling to the environment affects the two characteristic properties of a protective measurement, namely, (i) the ability to leave the state of the system approximately unchanged and (ii) the transfer of information about expectation values to the apparatus pointer. We find that even when the interaction with the environment is weak enough not to lead to appreciable decoherence of the initial qubit state, it causes a significant broadening of the probability distribution for the position of the apparatus pointer at the conclusion of the measurement. This washing out of the pointer position crucially diminishes the accuracy with which the desired expectation values can be measured from a readout of the pointer. We additionally show that even when the coupling to the environment is chosen such that the state of the system is immune to decoherence, the environment may still detrimentally affect the pointer readout.

Download