No Arabic abstract
The eXciton Franz-Keldysh (XFK) effect is observed in GaN p-n junction diodes via the spectral variation of photocurrent responsivity data that redshift and broaden with increasing reverse bias. Photocurrent spectra are quantitatively fit over a broad photon energy range to an XFK model using only a single fit parameter that determines the lineshape, the local bias ($V_{l}$), uniquely determining the local electric field maximum and depletion widths. As expected, the spectrally determined values of $V_{l}$ vary linearly with the applied bias ($V$) and reveal a large reduction in the local electric field due to electrostatic non-uniformity. The built-in bias ($V_{bi}$) is estimated by extrapolating $V_{l}$ at $V=0$, which compared with independent C-V measurements indicates an overall $pm$0.31 V accuracy of $V_{l}$. This demonstrates sub-bandgap photocurrent spectroscopy as a local probe of electric field in wide bandgap diodes that can be used to map out regions of device breakdown (hot spots) for improving electrostatic design of high voltage devices.
We present the combined analysis of the electroluminescence (EL) as well as the current-voltage (I-V) behavior of single, freestanding (In,Ga)N/GaN nanowire (NW) light-emitting diodes (LEDs) in an unprocessed, self-assembled ensemble grown by molecular beam epitaxy. The data were acquired in a scanning electron microscope equipped with a micromanipulator and a luminescence detection system. Single NW spectra consist of emission lines originating from different quantum wells, and the width of the spectra increases with decreasing peak emission energy. The corresponding I-V characteristics are described well by the modified Shockley equation. The key advantage of this measurement approach is the possibility to correlate the EL intensity of a single NW LED with the actual current density in this NW. This way, the external quantum efficiency (EQE) can be investigated as a function of the current in a single NW LED. The comparison of the EQE characteristic of single NWs and the ensemble device allows a quite accurate determination of the actual number of emitting NWs in the working ensemble LED and the respective current densities in its individual NWs. This information is decisive for a meaningful and comprehensive characterization of a NW ensemble device, rendering the measurement approach employed here a very powerful analysis tool.
By the insertion of thin InGaN layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.
Halide perovskites have emerged as disruptive semiconductors for applications including photovoltaics and light emitting devices, with modular optoelectronic properties realisable through composition and dimensionality tuning. Layered Ruddlesden-Popper perovskites of the form BA2MAn-1PbnI3n+1, where n is the number of lead-halide and methylammonium (MA) sheets spaced by longer butylammonium (BA) cations, are particularly interesting due to their unique two-dimensional character and charge carrier dynamics dominated by strongly bound excitons. However, long-range energy transport through exciton diffusion in these materials is not understood or realised. Here, we employ local time-resolved luminescence mapping techniques to visualise exciton transport in high-quality exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. We uncover two distinct transport regimes, depending on the temperature range studied. At temperatures above 100 K, diffusion is mediated by thermally activated hopping processes between localised states. At lower temperatures, a non-uniform energetic landscape emerges in which exciton transport is dominated by energy funnelling processes to lower energy states, leading to long range transport over hundreds of nanometres even in the absence of exciton-phonon coupling and in the presence of local optoelectronic heterogeneity. Efficient, long-range and switchable excitonic funnelling offers exciting possibilities of controlled directional long-range transport in these 2D materials for new device applications.
We report magneto-optical spectroscopy of gated monolayer MoS$_2$ in high magnetic fields up to 28T and obtain new insights on the many-body interaction of neutral and charged excitons with the resident charges of distinct spin and valley texture. For neutral excitons at low electron doping, we observe a nonlinear valley Zeeman shift due to dipolar spin-interactions that depends sensitively on the local carrier concentration. As the Fermi energy increases to dominate over the other relevant energy scales in the system, the magneto-optical response depends on the occupation of the fully spin-polarized Landau levels in both $K/K^{prime}$ valleys. This manifests itself in a many-body state. Our experiments demonstrate that the exciton in monolayer semiconductors is only a single particle boson close to charge neutrality. We find that away from charge neutrality it smoothly transitions into polaronic states with a distinct spin-valley flavour that is defined by the Landau level quantized spin and valley texture.
GaN nanowires grown by molecular beam epitaxy generally suffer from dominant nonradiative recombination, which is believed to originate from point defects. To suppress the formation of these defects, we explore the synthesis of GaN nanowires at temperatures up to 915 ${deg}C$ enabled by the use of thermally stable TiN$_x$/Al$_2$O$_3$ substrates. These samples exhibit indeed bound exciton decay times approaching those measured for state-of-the-art bulk GaN. However, the decay time is not correlated with the growth temperature, but rather with the nanowire diameter. The inverse dependence of the decay time on diameter suggests that the nonradiative process in GaN nanowires is not controlled by the defect density, but by the field ionization of excitons in the radial electric field caused by surface band bending. We propose a unified mechanism accounting for nonradiative recombination in GaN nanowires of arbitrary diameter.