Self-duality of the local cohomology of the Jacobian ring and Gherardellis Theorem


Abstract in English

We prove that the $0$-th local cohomology of the jacobian ring of a projective hypersurface with isolated singularities has a nice interpretation it in the context of linkage theory. Roughly speaking, it represents a measure of the failure of Gherardellis theorem for the corresponding graded modules. This leads us to a different and characteristic free proof of its self-duality, which turns out to be an easy consequence of Grothendiecks local duality theorem.

Download