Do you want to publish a course? Click here

Pairing symmetry of an intermediate valence superconductor CeIr3 investigated using muSR measurements

196   0   0.0 ( 0 )
 Added by Devashibhai Adroja
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the bulk and microscopic properties of the rhombohedral intermediate valence superconductor CeIr$_3$ by employing magnetization, heat capacity, and muon spin rotation and relaxation ($mu$SR) measurements. The magnetic susceptibility indicates bulk superconductivity below $T_mathrm{C} = 3.1$~K. Heat capacity data also reveal a bulk superconducting transition at $T_mathrm{C} = 3.1$~K with a second weak anomaly near 1.6~K. At $T_{mathrm{C}}$, the jump in heat capacity $Delta C$/$gamma T_{mathrm{C}} sim 1.39(1)$, is slightly less than the BCS weak coupling limit of 1.43. Transverse-field $mu$SR measurements suggest a fully gapped, isotropic, $s$-wave superconductivity with 2$Delta(0)/k_{mathrm{B}}T_{mathrm{C}} = 3.76(3)$, very close to 3.56, the BCS gap value for weak-coupling superconductors. From the temperature variation of magnetic penetration depth, we have also determined the London penetration depth $lambda_{mathrm{L}}(0) = 435(2)$~nm, the carriers effective mass enhancement $m^{*} = 1.69(1)m_{mathrm{e}}$ and the superconducting carrier density $n_{mathrm{s}} = 2.5(1)times 10^{26}$ carriers m$^{-3}$. The fact that LaIr$_3$, with no $4f$-electrons, and CeIr$_3$ with $4f^{n}$ electrons where $n le 1$-electron (Ce ion in a valence fluctuating state), both exhibit the same $s$-wave gap symmetry indicates that the physics of these two compounds is governed by the Ir-$d$ band near the Fermi-level, which is in agreement with previous band structure calculations.



rate research

Read More

The superconducting properties of the recently discovered double Fe$_2$As$_2$ layered high-$T_c$ superconductor RbCa$_2$Fe$_4$As$_4$F$_2$ with $T_capprox$ 30~K have been investigated using magnetization, heat capacity, transverse-field (TF) and zero-field (ZF) muon-spin rotation/relaxation ($mu$SR) measurements. Our low field magnetization measurements and heat capacity (C$_p$) reveal an onset of bulk superconductivity with $T_{bf c}sim$ 30.0(4) K. Furthermore, the heat capacity exhibits a jump at $T_{bf c}$ of $Delta$C$_p$/$T_{bf c}$=94.6 (mJ/mole-K$^2$) and no clear effect of applied magnetic fields was observed on C$_p$(T) up to 9 T between 2 K and 5 K. Our analysis of the TF-$mu$SR results shows that the temperature dependence of the magnetic penetration depth is better described by a two-gap model, either isotropic $s$+$s$-wave or $s$+$d$-wave than a single gap isotropic $s$-wave or $d$-wave model for the superconducting gap. The presence of two superconducting gaps in RbCa$_2$Fe$_4$As$_4$F$_2$ suggests a multiband nature of the superconductivity, which is consistent with the multigap superconductivity observed in other Fe-based superconductors, including ACa$_2$Fe$_4$As$_4$F$_2$ (A=K and Cs). Furthermore, from our TF-$mu$SR study we have estimated an in-plane penetration depth $lambda_{mathrm{ab}}$$(0)$ =231.5(3) nm, superconducting carrier density $n_s = 7.45 times 10^{26}~ $m$^{-3}$, and carriers effective-mass $m^*$ = 2.45textit{m}$_{e}$. Our ZF $mu$SR measurements do not reveal a clear sign of time reversal symmetry breaking at $T_{bf c}$, but the temperature dependent relaxation between 150 K and 1.2 K might indicate the presence of spin-fluctuations. The results of our present study have been compared with those reported for other Fe pnictide superconductors.
The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typically favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yield a standard s-wave state without sign change (s++). Here we show that applying pressure to KFe2As2 induces a change of pairing state. The critical temperature Tc decreases with pressure initially, and then suddenly increases, above a critical pressure Pc. The constancy of the Hall coefficient through Pc rules out a change in the Fermi surface. There is compelling evidence that the pairing state below Pc is d-wave, from bulk measurements at ambient pressure. Above Pc, the high sensitivity to disorder argues for a particular kind of s+- state. The change from d-wave to s-wave is likely to proceed via an unusual s + id state that breaks time-reversal symmetry. The proximity of two distinct pairing states found here experimentally is natural given the near degeneracy of d-wave and s+- states found theoretically. These findings make a compelling case for spin-fluctuation-mediated superconductivity in this key iron-arsenide material.
Some of the most remarkable phenomena---and greatest theoretical challenges---in condensed matter physics arise when $d$ or $f$ electrons are neither fully localized around their host nuclei, nor fully itinerant. This localized/itinerant duality underlies the correlated electronic states of the high-$T_c$ cuprate superconductors and the heavy-fermion intermetallics, and is nowhere more apparent than in the $5f$ valence electrons of plutonium. Here we report the full set of symmetry-resolved elastic moduli of $PuCoGa_5$---the highest $T_c$ superconductor of the heavy fermions ($T_c$=18.5 K)---and find that the bulk modulus softens anomalously over a wide range in temperature above $T_c$. Because the bulk modulus is known to couple strongly to the valence state, we propose that plutonium valence fluctuations drive this elastic softening. This elastic softening is observed to disappear when the superconducting gap opens at $T_c$, suggesting that plutonium valence fluctuations have a strong footprint on the Fermi surface, and that $PuCoGa_5$ avoids a valence-transition by entering the superconducting state. These measurements provide direct evidence of a valence instability in a plutonium compound, and suggest that the unusually high-$T_c$ in this system is driven by valence fluctuations.
98 - G. T. liu , J. L. Luo , Z. Li 2006
A high quality superconducting Li$_{0.68}$NbO$_2$ polycrystalline sample was synthesized by deintercalation of Li ions from Li$_{0.93}$NbO$_2$. The field dependent resistivity and specific heat were measured down to 0.5 K. The upper critical field $H_{c2} (T)$ is deduced from the resistivity data and $H_{c2}(0)$ is estimated to be $sim 2.98$ T. A notable specific heat jump is observed at the superconducting transition temperature $T_c sim 5.0$ K at zero field. Below $T_c$, the electronic specific heat shows a thermal activated behavior and agrees well with the theoretical result of the BCS s-wave superconductors. It indicates that the superconducting pairing in Li$_{0.68}$NbO$_2$ has s-wave symmetry.
227 - Junren Shi 2008
We establish the general form of effective interacting Hamiltonian for LaOFeAs system based on the symmetry consideration. The peculiar symmetry property of the electron states yields unusual form of electron-electron interaction. Based on the general effective Hamiltonian, we determine all the ten possible pairing states. More physical considerations would further reduce the list of the candidates for the pairing state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا