Do you want to publish a course? Click here

Constructing Carrollian CFTs

75   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.



rate research

Read More

A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involving the T(U(N)) theory. In this paper, we generalise the preceding result by studying quivers that contain a T(G) link, where G is self-dual under S-duality. In particular, the cases of G = SO(2N), USp(2N) and G_2 are examined in detail. We propose the theories that arise from an appropriate insertion of an S-fold into a brane system, in the presence of an orientifold threeplane or an orientifold fiveplane. By analysing the moduli spaces, we test such a proposal against its S-dual configuration using mirror symmetry. The case of G_2 corresponds to a novel class of quivers, whose brane construction is not available. We present several mirror pairs, containing G_2 gauge groups, that have not been discussed before in the literature.
153 - Andrea Manenti 2019
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform vanishes when the conformal dimension and spin are those of a double twist operator $Delta = 2Delta_phi + ell + 2n$. By analytically continuing to Lorentzian signature we show that the spectral density at high spatial momenta has support on the spectrum condition $|omega| > |k|$. This leads to a series of sum rules. Finally, we explicitly match the thermal block expansion with the momentum space Greens function at finite temperature in several examples.
We study the two-point function of local operators in the presence of a defect in a generic conformal field theory. We define two pairs of cross ratios, which are convenient in the analysis of the OPE in the bulk and defect channel respectively. The new coordinates have a simple geometric interpretation, which can be exploited to efficiently compute conformal blocks in a power expansion. We illustrate this fact in the case of scalar external operators. We also elucidate the convergence properties of the bulk and defect OPE decompositions of the two-point function. In particular, we remark that the expansion of the two-point function in powers of the new cross ratios converges everywhere, a property not shared by the cross ratios customarily used in defect CFT. We comment on the crucial relevance of this fact for the numerical bootstrap.
Dynamics in AdS spacetimes is characterized by various time-periodicities. The most obvious of these is the time-periodic evolution of linearized fields, whose normal frequencies form integer-spaced ladders as a direct consequence of the structure of representations of the conformal group. There are also explicitly known time-periodic phenomena on much longer time scales inversely proportional to the coupling in the weakly nonlinear regime. We ask what would correspond to these long time periodicities in a holographic CFT, provided that such a CFT reproducing the AdS bulk dynamics in the large central charge limit has been found. The answer is a very large family of multiparticle operators whose conformal dimensions form simple ladders with spacing inversely proportional to the central charge. We give an explicit demonstration of these ideas in the context of a toy model holography involving a $phi^4$ probe scalar field in AdS, but we expect the applicability of the underlying structure to be much more general.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا