In this work thin films of the La1-xSrxCoO3 (0.05 < x < 0.26) compound were grown, employing the so-called spray pyrolysis process. The as-grown thin films exhibit polycrystalline microstructure, with uniform grain size distribution, and observable porosity. Regarding their electrical transport properties, the produced thin films show semiconducting-like behavior, regardless the Sr doping level, which is most likely due to both the oxygen deficiencies and the grainy nature of the films. Furthermore, room temperature current-voltage (I-V) measurements reveal stable resistance switching behavior, which is well explained in terms of space-charge limited conduction mechanism. The presented experimental results provide essential evidence regarding the engagement of low cost, industrial-scale methods of growing perovskite transition metal oxide thin films, for potential applications in random access memory devices.