Real-time nanodiamond thermometry probing in-vivo thermogenic responses


Abstract in English

Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities, such as homeostatic thermoregulation and energy metabolism. However, it is challenging to reduce the size of bio-compatible thermometers down to submicrometers despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Light-emitting nanothermometers that remotely sense temperature via optical signals exhibit considerable potential in such textit{in-vivo} high-spatial-resolution thermometry. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds (NDs), we demonstrate textit{in-vivo} real-time temperature monitoring inside textit{Caenorhabditis elegans} (textit{C. elegans}) worms. We developed a thermometry system that can measure the temperatures of movable NDs inside live adult worms with a precision of $pm 0.22^{circ}{rm C}$. Using this system, we determined the increase in temperature based on the thermogenic responses of the worms during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates sub-micrometer localization of real-time temperature information in living animals and direct identification of their pharmacological thermogenesis. The results obtained facilitate the development of a method to probe subcellular temperature variation inside living organisms and may allow for quantification of their biological activities based on their energy expenditures.

Download