Do you want to publish a course? Click here

Conditional mean dimension

109   0   0.0 ( 0 )
 Added by Bingbing Liang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We introduce some notions of conditional mean dimension for a factor map between two topological dynamical systems and discuss their properties. With the help of these notions, we obtain an inequality to estimate the mean dimension of an extension system. The conditional mean dimension for $G$-extensions are computed. We also exhibit some applications in the dynamical embedding problems.



rate research

Read More

141 - Hanfeng Li 2011
We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-Lindenstrauss-Weiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing continuous actions of countable sofic groups with infinite entropy.
186 - Hanfeng Li , Bingbing Liang 2013
We introduce an invariant, called mean rank, for any module M of the integral group ring of a discrete amenable group $Gamma$, as an analogue of the rank of an abelian group. It is shown that the mean dimension of the induced $Gamma$-action on the Pontryagin dual of M, the mean rank of M, and the von Neumann-Luck rank of M all coincide. As applications, we establish an addition formula for mean dimension of algebraic actions, prove the analogue of the Pontryagin-Schnirelmnn theorem for algebraic actions, and show that for elementary amenable groups with an upper bound on the orders of finite subgroups, algebraic actions with zero mean dimension are inverse limits of finite entropy actions.
140 - David Burguet , Ruxi Shi 2021
We investigate the mean dimension of a cellular automaton (CA for short) with a compact non-discrete space of states. A formula for the mean dimension is established for (near) strongly permutative, permutative algebraic and unit one-dimensional automata. In higher dimensions, a CA permutative algebraic or having a spaceship has infinite mean dimension. However, building on Meyerovitchs example, we give an example of algebraic surjective cellular automaton with positive finite mean dimension.
64 - Ruxi Shi 2021
In this note, we show several variational principles for metric mean dimension. First we prove a variational principles in terms of Shapiras entropy related to finite open covers. Second we establish a variational principle in terms of Katoks entropy. Finally using these two variational principles we develop a variational principle in terms of Brin-Katok local entropy.
225 - Lei Jin , Yixiao Qiao 2021
Mean dimension is a topological invariant of dynamical systems, which originates with Mikhail Gromov in 1999 and which was studied with deep applications around 2000 by Elon Lindenstrauss and Benjamin Weiss within the framework of amenable group actions. Let a countable discrete amenable group $G$ act continuously on compact metrizable spaces $X$ and $Y$. Consider the product action of $G$ on the product space $Xtimes Y$. The product inequality for mean dimension is well known: $mathrm{mdim}(Xtimes Y,G)lemathrm{mdim}(X,G)+mathrm{mdim}(Y,G)$, while it was unknown for a long time if the product inequality could be an equality. In 2019, Masaki Tsukamoto constructed the first example of two different continuous actions of $G$ on compact metrizable spaces $X$ and $Y$, respectively, such that the product inequality becomes strict. However, there is still one longstanding problem which remains open in this direction, asking if there exists a continuous action of $G$ on some compact metrizable space $X$ such that $mathrm{mdim}(Xtimes X,G)<2cdotmathrm{mdim}(X,G)$. We solve this problem. Somewhat surprisingly, we prove, in contrast to (topological) dimension theory, a rather satisfactory theorem: If an infinite (countable discrete) amenable group $G$ acts continuously on a compact metrizable space $X$, then we have $mathrm{mdim}(X^n,G)=ncdotmathrm{mdim}(X,G)$, for any positive integer $n$. Our product formula for mean dimension, together with the example and inequality (stated previously), eventually allows mean dimension of product actions to be fully understood.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا