Signature of Collective Plasma Effects in Beam-Driven QED Cascades


Abstract in English

QED cascades play an important role in extreme astrophysical environments like magnetars. They can also be produced by passing a relativistic electron beam through an intense laser field. Signatures of collective pair plasma effects in these QED cascades are shown to appear in exquisite detail through plasma-induced frequency upshifts in the laser spectrum. Remarkably, these signatures can be detected even in small plasma volumes moving at relativistic speeds. Strong-field quantum and collective pair plasma effects can thus be explored with existing technology, provided that ultra-dense electron beams were co-located with multi-PW lasers.

Download