We present the first Doppler images of the prototypical active binary star RS CVn, derived from high-resolution spectra observed in 2004, 2016 and 2017, using three different telescopes and observing sites. We apply the least-squares deconvolution technique to all observed spectra to obtain high signal-to-noise line profiles, which are used to derive the surface images of the active K-type component. Our images show a complex spot pattern on the K star, distributed widely in longitude. All starspots revealed by our Doppler images are located below a latitude of about 70$^{circ}$. In accordance with previous light-curve modeling studies, we find no indication of a polar spot on the K star. Using Doppler images derived from two consecutive rotational cycles, we estimate a surface differential rotation rate of $DeltaOmega = -0.039 pm 0.003 ~rad~d^{-1}$ and $alpha = DeltaOmega/Omega_{eq} = -0.030 pm 0.002$ for the K star. Given the limited phase coverage during those two rotations, the uncertainty of our differential rotation estimate is presumably higher.