Let $Y$ be a complex projective variety of dimension $n$ with isolated singularities, $pi:Xto Y$ a resolution of singularities, $G:=pi^{-1}left(rm{Sing}(Y)right)$ the exceptional locus. From the Decomposition Theorem one knows that the map $H^{k-1}(G)to H^k(Y,Ybackslash {rm{Sing}}(Y))$ vanishes for $k>n$. It is also known that, conversely, assuming this vanishing one can prove the Decomposition Theorem for $pi$ in few pages. The purpose of the present paper is to exhibit a direct proof of the vanishing. As a consequence, it follows a complete and short proof of the Decomposition Theorem for $pi$, involving only ordinary cohomology.