No Arabic abstract
We study the dynamical evolution of eccentric massive black hole binaries (MBHBs) interacting with unbound stars by means of an extensive set of three body scattering experiments. Compared to previous studies, we extend the investigation down to a MBHB mass ratio of $q=m_2/m_1=10^{-4}$, where $m_1$ and $m_2$ are the masses of the primary and secondary hole respectively. Contrary to a simple extrapolation from higher mass ratios, we find that for $qlesssim 10^{-3}$ the eccentricity growth rate becomes negative, i.e., the binary {it circularises} as it shrinks. This behaviour is due to the subset of interacting stars captured in metastable counter-rotating orbits; those stars tend to extract angular momentum from the binary, promoting eccentricity growth for $q>10^{-3}$, but tend to inject angular momentum into the binary driving it towards circularisation for $q<10^{-3}$. The physical origin of this behaviour requires a detailed study of the orbits of this subset of stars and is currently under investigation. Our findings might have important consequences for intermediate MBHs (IMBHs) inspiralling onto MBHs (e.g. a putative $10^3rm M_{odot}$ black hole inspiralling onto SgrA$^*$).
Based on the secular theory, we discuss the orbital evolution of stars in a nuclear star cluster to which a secondary massive black hole is infalling with vanishing eccentricity. We find that the eccentricities of the stars could show sharp transitions, depending strongly on their initial conditions. By examining the phase-space structure of an associated Hamiltonian, we show that these characteristic behaviors are partly due to a probabilistic bifurcation at a separatrix crossing, resulting from the retrograde apsidal precession by the cluster potential. We also show that separatrix crossings are closely related to realization of a large eccentricity and could be important for astrophysical phenomena such as tidal disruption events or gravitational wave emissions.
We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the stellar regime are taken from the recent work of Vasiliev et al., who show that in the non-axisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binarys orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e>0.9) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mass to galaxy bulge mass by factors of 2 - 3. In the frequency regime currently accessible to pulsar timing arrays (PTAs), our assumptions imply a factor 2 - 3 reduction in the characteristic strain compared with the values computed in most recent studies, removing the tension that currently exists between model predictions and the non-detection of GWs.
At least $70%$ of massive OBA-type stars reside in binary or higher-order systems. The dynamical evolution of these systems can lend insight into the origins of extreme phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical process, the Eccentric Kozai-Lidov (EKL) Mechanism, a third companion star alters the secular evolution of a binary system. For dynamical stability, these triple systems must have a hierarchical configuration. We explore the effects of a distant third companions gravitational perturbations on a massive binarys orbital configuration before significant stellar evolution has taken place ($leq 10$ Myr). We include tidal dissipation and general relativistic precession. With large ($38,000$ total) Monte-Carlo realizations of massive hierarchical triples, we characterize imprints of the birth conditions on the final orbital distributions. Specifically, we find that the final eccentricity distribution over the range $0.1-0.7$ is an excellent indicator of its birth distribution. Furthermore, we find that the period distributions have a similar mapping for wide orbits. Finally, we demonstrate that the observed period distribution for approximately $10$ Myr-old massive stars is consistent with EKL evolution.
Massive black hole binaries (MBHBs) with masses of ~ 10^4 to ~ 10^10 of solar masses are one of the main targets for currently operating and forthcoming space-borne gravitational wave observatories. In this paper, we explore the effect of the stellar host rotation on the bound binary hardening efficiency, driven by three-body stellar interactions. As seen in previous studies, we find that the centre of mass (CoM) of a prograde MBHB embedded in a rotating environment starts moving on a nearly circular orbit about the centre of the system shortly after the MBHB binding. In our runs, the oscillation radius is approximately 0.25 ( approximately 0.1) times the binary influence radius for equal mass MBHBs (MBHBs with mass ratio 1:4). Conversely, retrograde binaries remain anchored about the centre of the host. The binary shrinking rate is twice as fast when the binary CoM exhibits a net orbital motion, owing to a more efficient loss cone repopulation even in our spherical stellar systems. We develop a model that captures the CoM oscillations of prograde binaries; we argue that the CoM angular momentum gain per time unit scales with the internal binary angular momentum, so that most of the displacement is induced by stellar interactions occurring around the time of MBHB binding, while the subsequent angular momentum enhancement gets eventually quashed by the effect of dynamical friction. The effect of the background rotation on the MBHB evolution may be relevant for LISA sources, that are expected to form in significantly rotating stellar systems.
Massive black hole binaries are predicted to form during the hierarchical assembly of cosmic structures and will represent the loudest sources of low-frequency gravitational waves (GWs) detectable by present and forthcoming GW experiments. Before entering the GW-driven regime, their evolution is driven by the interaction with the surrounding stars and gas. While stellar interactions are found to always shrink the binary, recent studies predict the possibility of binary outspiral mediated by the presence of a gaseous disk, which could endlessly delay the coalescence and impact the merger rates of massive binaries. Here we implement a semi-analytical treatment that follows the binary evolution under the combined effect of stars and gas. We find that binaries may outspiral only if they accrete near or above their Eddington limit and only until their separation reaches the gaseous disk self-gravitating radius. Even in case of an outspiral, the binary eventually reaches a large enough mass for GW to take over and drive it to coalescence. The combined action of stellar hardening, mass growth and GW-driven inspiral brings binaries to coalescence in few hundreds Myr at most, implying that gas-driven expansion will not severely affect the detection prospects of upcoming GW facilities.