No Arabic abstract
We study the radiative transitions between vector and pseudoscalar quarkonia in the light-front Hamiltonian approach, and investigate the effects of using different current component and different reference frames. In practical calculations with truncated Fock spaces, transition form factors may acquire current component dependence and frame dependence, and such dependences could serve as a measure for the Lorentz symmetry violation. We suggest using the transverse current with $m_j=0$ state of the vector meson, since this procedure employs the dominant spin components of the light-front wavefunctions and is more robust in practical calculations. We calculate the transition form factor between vector and pseudoscalar quarkonia and investigate the frame dependence with light-front wavefunctions calculated from the valence Fock sector. We suggest using frames with minimal longitudinal momentum transfer for calculations in the valence Fock sector, namely the Drell-Yan frame for the space-like region and a specific longitudinal frame for the timelike region; at $q^2=0$ these two frames give the same result.
We calculate the transition form factor between vector and pseudoscalar quarkonia in both the timelike and the spacelike region using light-front dynamics. We investigate the frame dependence of the form factors for heavy quarkonia with light-front wavefunctions calculated from the valence Fock sector. This dependence could serve as a measure for the Lorentz symmetry violation arising from the Fock-space truncation. We suggest using frames with minimal longitudinal momentum transfer for calculations in the valence Fock sector, namely the Drell-Yan frame for the space-like region and a specific longitudinal frame for the timelike region; at $q^2=0$ these two frames give the same result. We also use the transition form factor in the timelike region to investigate the electromagnetic Dalitz decay $psi_Ato psi_B l^+l^-$ ($l = e,mu$) and predict the effective mass spectrum of the lepton pair.
This contribution briefly illustrates preliminary calculations of the electromagnetic form factors of $^3$He and $^3$H, obtained within the Light-front Relativistic Hamiltonian Dynamics, adopting i) a Poincare covariant current operator, without dynamical two-body currents, and ii) realistic nuclear bound states with $S$, $P$ and $D$ waves. The kinematical region of few $(GeV/c)^2$, relevant for forthcoming TJLAB experiments, has been investigated, obtaining possible signatures of relativistic effects for $Q^2>2.5 ~(GeV/c)^2$.
In an explicitly covariant light-front formalism, we analyze transition form factors between pseudoscalar and scalar mesons. Application is performed in case of the $B to f_0(980)$ transition in the full available transfer momentum range $q^2$.
We calculate the gravitational form factors of the pion, sigma meson, and rho meson in the Nambu-Jona-Lasinio (NJL) model of quantum chromodynamics. The canonical energy-momentum tensor (EMT) is used in their derivation, allowing the possibility of an antisymmetric contribution when the hadron has intrinsic spin. We show that the asymmetric graviton vertex arising from the canonical EMT satisfies a simpler Ward-Takahashi identity (WTI) than the symmetric graviton vertex of the Belinfante EMT. The necessity of fully dressing the graviton vertex through the relevant Bethe-Salpeter equation is demonstrated for observing both the WTI and a low-energy pion theorem. Lastly, we calculate static moments of the meson EMT decompositions, obtaining predictions for the meson mass radii. We find light cone mass radii of 0.27 fm for the pion, 0.32 fm for the sigma, and 0.39 fm for the rho. For the pion and rho, these are smaller than the light cone charge radii, respectively 0.51 fm and 0.45 fm, while we have a sigma charge radius of zero. Our light cone pion mass radius agrees with a phenomenological extraction from KEKB data.
We predict the $mathcal{V} to mathcal{P} gamma$ decay widths and the $mathcal{V} to mathcal{P} gamma^{*}$ transition form factors, where $mathcal{V}=(rho, omega, K^*, phi)$ and $mathcal{P}= (pi,K, eta,eta^prime)$, using spin-improved holographic light-front wavefunctions for the mesons. We find excellent agreement with the available data for both the decay widths and the timelike transition form factors extracted from the leptonic conversion decays $mathcal{V} to mathcal{P} l^+ l^-$.