No Arabic abstract
The Kelvin-Helmholtz instability serves as a simple, well-defined setup for assessing the accuracy of different numerical methods for solving the equations of hydrodynamics. We use it to extend our previous analysis of the convergence and the numerical dissipation in models of the propagation of waves and in the tearing-mode instability in magnetohydrodynamic models. To this end, we perform two-dimensional simulations with and without explicit physical viscosity at different resolutions. A comparison of the growth of the modes excited by our initial perturbations allows us to estimate the effective numerical viscosity of two spatial reconstruction schemes (fifth-order monotonicity preserving and second-order piecewise linear schemes).
The method of Smoothed Particle Hydrodynamics (SPH) has been widely studied and implemented for a large variety of problems, ranging from astrophysics to fluid dynamics and elasticity problems in solids. However, the method is known to have several deficiencies and discrepancies in comparison with traditional mesh-based codes. In particular, there has been a discussion about its ability to reproduce the Kelvin-Helmholtz Instability in shearing flows. Several authors reported that they were able to reproduce correctly the instability by introducing some improvements to the algorithm. In this contribution, we compare the results of Read et al. (2010) implementation of the SPH algorithm with the original Gadget-2 N-body/SPH code.
There has been interest in recent years to assess the ability of astrophysical hydrodynamics codes to correctly model the Kelvin-Helmholtz instability. Smoothed particle hydrodynamics (SPH), in particular, has received significant attention, though there has yet to be a clear demonstration that SPH yields converged solutions that are in agreement with other methods. We have performed SPH simulations of the Kelvin-Helmholtz instability using the test problem put forward by Lecoanet et al (2016). We demonstrate that the SPH solutions converge to the reference solution in both the linear and non-linear regimes. Quantitative convergence in the strongly non-linear regime is achieved by using a physical Navier-Stokes viscosity and thermal conductivity. We conclude that standard SPH with an artificial viscosity can correctly capture the Kelvin-Helmholtz instability.
We perform simulations of the Kelvin-Helmholtz instability using smoothed particle hydrodynamics (SPH). The instability is studied both in the linear and strongly non-linear regimes. The smooth, well-posed initial conditions of Lecoanet et al. (2016) are used, along with an explicit Navier-Stokes viscosity and thermal conductivity to enforce the evolution in the non-linear regime. We demonstrate convergence to the reference solution using SPH. The evolution of the vortex structures and the degree of mixing, as measured by a passive scalar `colour field, match the reference solution. Tests with an initial density contrast produce the correct qualitative behaviour. The L2 error of the SPH calculations decreases as the resolution is increased. The primary source of error is numerical dissipation arising from artificial viscosity, and tests with reduced artificial viscosity have reduced L2 error. A high-order smoothing kernel is needed in order to resolve the initial velocity amplitude of the seeded mode and inhibit excitation of spurious modes. We find that standard SPH with an artificial viscosity has no difficulty in correctly modelling the Kelvin-Helmholtz instability and yields convergent solutions.
The analysis of the stability properties of astrophysical jets against Kelvin-Helmholtz (or shear-layer) instabilities plays a basic role in the understanding the origin and physical characteristics of these objects. Numerical simulations by Bodo et al. (1998) have shown that the three-dimensional non-linear evolution of KH instabilities in supersonic jets is substantially faster than in the two-dimensional case, leading to a cascade of modes towards smaller scales and a very effective mixing and momentum transfer to the ambient medium. On the other hand, Rossi et al. (1997) and Micono et al. (1998) found, in two dimensions, that radiative losses tend to reduce and delay mixing effects and momentum transfer to the ambient medium. In this paper, as a logical next step, we investigate the effects of radiative losses on the stability of 3D supersonic jets, assuming that the internal jet density is initially lower, equal and higher than the ambient medium, respectively. We find that light and equal-density radiative jets evolve in a qualitatively similar fashion with respect to the corresponding adiabatic ones. Conversely, we note substantial differences in the evolution of heavy jets: they remain more collimated and do not spread out, while the momentum gained by the ambient medium stays within ~ 5 jet radii.
We provide numerical evidence that a Kelvin-Helmholtz instability occurs in the Dirac fluid of electrons in graphene and can be detected in current experiments. This instability appears for electrons in the viscous regime passing though a micrometer-scale obstacle and affects measurements on the time scale of nanoseconds. A possible realization with a needle-shaped obstacle is proposed to produce and detect this instability by measuring the electric potential difference between contact points located before and after the obstacle. We also show that, for our setup, the Kelvin-Helmholtz instability leads to the formation of whirlpools similar to the ones reported in Bandurin et al. [Science 351, 1055 (2016)]. To perform the simulations, we develop a lattice Boltzmann method able to recover the full dissipation in a fluid of massless particles.